Appendix Q

Thermal Correlation of BepiColombo MOSIF 10 Solar Constants Simulation Test

Savino De Palo Tiziano Malosti (ThalesAlenia Space, Italy)

> Gianluca Filiddani (Sofiter System Eng., Italy)

Abstract

BepiColombo is the first European mission directed so close to the Sun and will provide the greatest advance in understanding Mercury. It is an international cooperation coordinated by the European Space Agency (ESA) with the participation of the Japan Aerospace Exploration Agency (JAXA).

The mission is composed of four spacecraft, the most important of which are the Mercury Planetary Orbiter (MPO), which will map and study the planet surface and interior from a low orbit, and the Mercury Magnetospheric Orbiter (MMO), whose main goal is to investigate the magnetosphere of the planet closer to the Sun.

One of the most complex and demanding activities related to the BepiColombo thermal control concerns the design of the MOSIF, the solar shield which will protect the Japanese module (MMO) during the journey from the Earth to Mercury. BepiColombo will be exposed to an ever increasing solar heat flux along the whole cruise: up to ten times higher, once orbiting around Mercury, than when launched from the Earth.

A Thermal Balance Test (TBT) of MOSIF was held in ESA/ESTEC in November 2010. This presentation compares two different methods for correlating the test data with the TMM analysis results.

The first part is focused on a brief description of the activities related to the correlation of MOSIF TMM; this work has been carried out by applying the rules specified by a TAS-I internal procedure. The second part reports the process followed to achieve the same correlation level in a different way, which consists in implementing a stochastic approach by means of iSightTM. Eventually, advantages and disadvantages in using these two different methods are highlighted.

	ThalesAlenia A Theles / Finneccanice Company Space
THERMAL CORRELATION OF MOSIF 10 SOLAR CONSTANTS TEST	BEPICOLOMBO SIMULATION
Written by: Tiziano Malosti, Gianluca Filidda	nni
Presented by: Savino De Palo	
BS- Infrastructure and Transportation 25th European Workshop on Thermal & ECLS S/W, 8-9 Nov. 2011	THALES
ThalesAlenia A Thates / Francescola Conference Space	INTRODUCTION
 MOSIF ⇒ BepiColombo solar shield which Japanese orbital module) during the cruise r Two different approaches for the correlation solar constants Thermal Balance Test (TB) November 2010 : 	2 ch shades the MMO (the mission phase n of MOSIF TMM with 10 T) held in ESA/ESTEC in
 Standard / classical method Optimization / DoE approach using iSight 	nt™

BS - Infrastructures and Transportation 25th European Workshop on Thermal & ECLS S/W, 8-9 Nov. 2011 THALES

Thates	alesAlenia	STANDA	RD CO	RRELA	ΓΙΟΝ
□ N a s □ T ta	NOSIF Sunshade T acceptable values of showed by table in the The correlated value able here below	MM was correlated with TBT res of Delta-T and standard deviation e following slide es of MLI thermo-physical parameter	ults, ob (ơ) for a rs are re	taining f all cases	^s ully s as
	Thermo-Physical Parameter	Test article items	Old Value	Updated value	
	Equivalent emissivity in the radiative conductor	External 1 st layer (Nextel) → MLI ext 2 nd layer	0.140	0.140	
	Equivalent emissivity in the radiative conductor	MLI ext 2 nd layer → MLI inner layer Titanium (APPLIED IN THE +X HGA CONCAVITY)	0.019	0.023	
	Equivalent emissivity in	MLI ext $2^{n\alpha}$ layer \rightarrow MLI inner layer Titanium	0.010	0.024	l

the radiative conductor	(APPLIED IN THE MLI GAP)	0.019	0.024
Equivalent emissivity in the radiative conductor	MLI ext 2 nd layer → MLI inner layer Titanium (ALL THE OTHER SUNSHADE ZONES)	0.019	0.019

BS - Infrastructures and Transportation

25th European Workshop on Thermal & ECLS S/W, 8-9 Nov. 2011

276

THALES

Phase 6 - Survival Sun from +X Phase 3 - Cold calibration Phase 4 - Hot Final Cruise Phase 7 - Intermediate Cruise Phase 8 - Initial Cruise TEST DATA 07/12/2010 10.42.00 TEST DATA Post TEST DATA TEST DATA TEST DATA ∆T (Test Post Post ∆T (Test Post ∆ T (Test ∆T (Test-Post ∆T (Test-MOSIF SUNSHADE MLI 04/12/2010 13.07.00 05/12/2010 14.46.00 08/12/2010 16.21.00 02/12/2010 18.51.00 34.4 24.0 21.2 -148.0 -138.6 9.4 44.7 79.1 -79.8 -52.6 27.2 -24.7 -0.7 -82.4 -61.2 +Y UPPER (Outer Ti layer) -176.2 -133.2 43.0 268.7 313.6 44.9 -8.8 -16.3 -7.5 146.1 180.4 34.4 37.9 68.0 30.1 +Y UPPER (Ti layer behind nextel) -131.3 -135.3 -4.0 48.7 77.2 28.5 -60.8 -14.6 46.2 -20.1 -0.2 19.9 -75.3 0.03-15.3 +Y MEDIUM (Outer Ti layer) -173.2 -132.6 40.6 272.3 303.0 30.7 32.8 118.1 85.3 148.9 172.5 23.6 40.0 61.5 21.5 +Y MEDIUM (Ti layer behind nextel) 112.6 -125.4 -12.8 56.3 98.3 42.0 49.9 6.9 56.8 -12.2 15.1 27.2 -64.7 49.5 15.2 +Y LOWER (Outer Ti layer) 58.7 119.8 43.0 34.9 168.8 -127.8 41.0 274.1 332.8 27.6 147.4 150.3 193.3 41.2 76.1 +Y LOWER (Ti layer behind nextel) 17.6 48.3 23.6 -148.1 -148.3 -0.3 -3.5 21.1 43.9 92.2 -60.3 -36.2 24.1 -105.1 -81.5 +Y+X UPPER (Outer Ti layer) -176.1 -150.1 26.0 172.5 166.2 -6.3 264.7 283.2 18.5 71.9 65.2 -6.7 -16.6 -26.9 -10.3 +Y+X UPPER (Ti layer behind nextel) -130.2 -143.8 -13.6 2.5 22.7 20.2 47.9 110.7 62.8 -53.2 -29.5 23.7 -94.7 -74.6 20.1 +Y+X MEDIUM (Outer Ti layer) 172.8 -150.7 22.1 174.6 173.6 -1.0 269.8 346.8 77.0 73.5 78.1 4.6 -15.3 -16.0 -0.7 +Y+X MEDIUM (Ti layer behind nextel) 106.3 -138.2 -31.9 4.4 6.2 1.8 56.1 118.4 62.3 46.4 -39.5 6.9 -80.3 -78.1 2.2 +Y+X LOWER (Outer Tilayer) 56.6 -41.1 -166.7 -147.1 19.6 161.5 -104.9 271.1 344.9 73.8 63.5 4.3 -67.9 -22.3 -63.3 +Y+X LOWER (Ti layer behind nextel) 125.2 -134.0 -8.8 -93.8 -85.0 8.8 -52.5 -28.7 23.8 -111.3 -109.7 1.5 -119.3 -123.7 -4.4 -Y UPPER (Outer Ti layer) .171.7 .150.5 21.2 .141.4 .115.9 25.5 39.7 40.9 1.2 .157.8 .133.6 24.2 .166.5 .143.4 23.1 -Y UPPER (Ti layer behind nextel) -110.8 -122.7 -11.9 -83.1 -83.2 -0.1 47.5 -18.1 29.4 -98.5 -103.7 -5.2 -105.1 -114.3 -9.2 -Y LOWER (Outer Tilaver) -168.2 -142.8 -141.6 -114.1 34.6 80.1 45.5 -156.2 -136.9 26.7 25.4 27.5 -129.1 27.1 -163.6 -Y LOWER (Ti layer behind nextel) MOSIF SUNSHADE MLI AVERAGE DELTA 1 10.3 14.5 48.2 12.8 10.5 22.8 36.7 32.7 25.7 19.7 MOSIF SUNSHADE MLI STD DEVIATION

Post Test Predictions vs TBT

BS - Infrastructures and Transportation

25th European Workshop on Thermal & ECLS S/W. 8-9 Nov. 2011

		7
Tha	esAlen	ía
A Thales / Finm	scoarrice Correctly Space	се

ThalesAlenia

STANDARD CORRELATION

STANDARD CORRELATION

THALES

	Phase 3	- Cold ca	ibration	Phase 4	- Hot Fina	al Cruise	Pha S	se 6 - Sur un from +	vival X	Phase	7 - Interm Cruise	ediate	Phase	8 - Initial	Cruise
MOSIF SUNSHADE MLI	Post Correlation results	TEST DATA 02/12/2010 18.51.00	∆ T (Test- Analysis)	Post Correlation results	TEST DATA 04/12/2010 13.07.00	∆ T (Test- Analysis)	Post Correlation results	TEST DATA 05/12/2010 14.46.00	∆ T (Test- Analysis)	Post Correlation results	TEST DATA 07/12/2010 10.42.00	∆ T (Test- Analysis)	Post Correlation results	TEST DATA 08/12/2010 16.21.00	∆ T (Test- Analysis)
+Y UPPER (Outer Ti layer)	-152.7	-138.6	14.1	81.3	79.1	-2.2	-59.4	-52.6	6.8	2.6	-0.7	-3.3	-64.5	-61.2	3.3
+Y UPPER (Ti layer behind nextel)	-174.5	-133.2	41.3	294.4	313.6	19.2	-9.6	-16.3	-6.7	165.9	180.4	14.5	52.6	68.0	15.4
+Y MEDIUM (Outer Ti layer)	-145.0	-135.3	9.7	84.3	77.2	-7.1	-13.5	-14.6	-1.1	5.4	-0.2	-5.6	-61.4	-60.0	1.4
+Y MEDIUM (Ti layer behind nextel)	-172.3	-132.6	39.7	297.3	303.0	5.7	110.9	118.1	7.2	168.2	172.5	4.3	54.3	61.5	7.2
+Y LOWER (Outer Ti layer)	-119.3	-125.4	-6.1	92.3	98.3	6.0	1.8	6.9	5.1	13.4	15.1	1.7	-50.8	-49.5	1.3
+Y LOWER (Ti layer behind nextel)	-163.7	-127.8	35.9	302.6	332.8	30.2	134.3	147.4	13.1	172.4	193.3	20.9	57.6	76.1	18.5
+Y+X UPPER (Outer Ti layer)	-153.1	-148.3	4.8	12.1	17.6	5.5	86.6	92.2	5.6	-49.5	-36.2	13.2	-99.7	-81.5	18.2
+Y+X UPPER (Ti layer behind nextel)	-174.5	-150.1	24.4	169.6	166.2	-3.4	301.4	283.2	-18.2	69.6	65.2	-4.5	-18.2	-26.9	-8.7
+Y+X MEDIUM (Outer Ti layer)	-143.2	-143.8	-0.6	28.4	22.7	-5.7	100.6	110.7	10.1	-36.3	-29.5	6.8	-88.7	-74.6	14.1
+Y+X MEDIUM (Ti layer behind nextel)	-170.5	-150.7	19.8	177.8	173.6	-4.2	303.4	346.8	43.4	76.0	78.1	2.1	-13.3	-16.0	-2.7
+Y+X LOWER (Outer Ti layer)	-122.6	-138.2	-15.6	-10.8	6.2	17.0	111.7	118.4	6.8	-60.7	-39.5	21.2	-95.3	-78.1	17.2
+Y+X LOWER (Ti layer behind nextel)	-163.0	-147.1	15.9	87.9	56.6	-31.3	314.0	344.9	31.0	7.2	4.3	-11.5	-62.5	-63.3	-0.8
-Y UPPER (Outer Ti layer)	-129.0	-134.0	-5.0	-83.8	-85.0	-1.2	-29.0	-28.7	0.3	-107.6	-109.7	-2.1	-120.2	-123.7	-3.6
-Y UPPER (Ti layer behind nextel)	-167.3	-150.5	16.8	-126.4	-115.9	10.5	53.0	40.9	-12.1	-147.5	-133.6	14.0	-159.6	-143.4	16.2
-Y LOWER (Outer Ti layer)	-111.8	-122.7	-10.9	-78.8	-83.2	-4.4	-27.3	-18.1	9.2	-97.0	-103.7	-6.7	-105.3	-114.3	-9.0
-Y LOWER (Ti layer behind nextel)	-160.7	-142.8	17.9	-129.7	-114.1	15.6	60.6	80.1	19.5	-146.5	-129.1	17.4	-155.1	-136.9	18.2
MOSIF SUNSHADE MLI AVERAGE DELTA T		12.6			3.1			7.5			5.1			6.6	
MOSIF SUNSHADE MLI STD DEVIATION		17.5			14.1			15.1			10.5			10.1	
Standard Correlation Results vs TBT															

BS - Infrastructures and Transportation

25th European Workshop on Thermal & ECLS S/W, 8-9 Nov. 2011

THALES

Thales Alenia	OPTIMIZATION / DoE CORRELATION
A Theles / Finneccarics Configury Space	Correlation_nodes_mapped (Plosts_correlation_ALL_nodes_mapped_plase4.zmf) *Modified Tools_Edeb Wondow © Datatow © Correlation © Files © Correlation © Files © Correlation © Files © Correlation © Files © Correlation © Correlation © Correlation © Correlation
I7 Show details	
BS - Infrastructures and Transportatio 25th European Workshop on Thermal &	n ECLS S/W, 8-9 Nov. 2011

ThalesAlenia	OPTIMIZATION / DoE CORRELATION
Sight Design Gateway Musif Correlation Image: Sight Design Workshop on Thermal & ECC	<image/>
ThalesAlenia	OPTIMIZATION / DoE CORRELATION
 At the beginning 5 with MOSIF_EPS_12 MOSIF_GAP_E 	DoE (Latin Hypercube -20 levels) were performed, starting 2 starting range 0.01-0.9 PS and MOSIF_SS_EPS starting range 0.01-0.1
The first set of DoE MOSIF_EPS_12 ar	are in line with the standard correlation results especially for nd MOSIF_SS_EPS (see table below).

	Correlated Values (Standard Correlation)	DoE Results
MOSIF_EPS_12	0.14	0.123
MOSIF_GAP_EPS	0.024	0.015
MOSIF_SS_EPS	0.019	0.018

[□] Refinement of DoE results were carried out with an Optimization (Downhill Simplex method) run for Phase 4 (Hot Final Cruise)

```
BS - Infrastructures and Transportation
25th European Workshop on Thermal & ECLS S/W, 8-9 Nov. 2011
```

```
THALES
```

Thates / Fa	alesAlenia			OPTIN	/IZA	TION / DoE	CORREL	ATION
U Op	timization results	tor Pr	optir	I – Hot Final nization Resu (Phase 4)	Cruis Ilts	Se Correlated (Standard C	d Values orrelation)	
	MOSIF_EPS_12			0.1259		0.1	4	
	MOSIF_GAP_EP	PS		0.0258		0.02	24	
	MOSIF_SS_EPS			0.0186		0.019		
	Phase 4	Mear	n ΔT	Standard Deviation	С	Mean ∆T (Standard orrelation – Phase 4)	Standard D (Standa Correlati Phase	eviation ard on – 4)
MOSIF	Beam	1.8	88	4.79		3.0	4.9	
MOSIF	E Lower Ring	3.6	61	2.85		3.6	2.9	
MOSIF	Upper Ring	3.4	4	5.61		4.3	5.4	
MOSIF	Arms	7.7	' 6	8.57		7.1	8.7	
MOSIF	FI/F Ring	40	.5	1.33		39.8	1.4	
MOSIF	Internal Panels	5.4	10	3.80		4.6	3.9	
MOSIF	S/A Panels	1.9	98	3.69		1.0	3.6	
MOSIF	Sunshade MLI	0.0	56	13.79		3.1	14.1	
MOSIF	MLI Support	1.8	39	13.51		3.1	14.4	
MOSIF BS - In 25th E	F MLI Support	1.5 S/W. 8-91	39	13.51		3.1	14.4 TH	ALES

OPTIMIZATION / DoE CORRELATION

Dense 4 Optimization results was validated against Phase 6 (Survival) test data

Phase 6	Mean ∆T	Standard Deviation	<mark>Mean ΔT</mark> (Standard Correlation – Phase 6)	Standard Deviation (Standard Correlation – Phase 6)
MOSIF Beam	3.01	6.81	4.0	7.0
MOSIF Lower Ring	1.88	3.82	3.0	4.3
MOSIF Upper Ring	1.04	5.47	1.8	5.6
MOSIF Arms	9.00	8.23	8.4	8.4
MOSIF I/F Ring	39.92	2.14	39.4	2.2
MOSIF Internal Panels	4.63	5.08	4.0	5.2
MOSIF S/A Panels	0.97	4.68	0.1	4.9
MOSIF Sunshade MLI	4.30	14.58	7.5	15.1
MOSIF MLI Support	1.80	17.39	2.7	17.9

Better results (lower Delta-T w.r.t. standard correlation) are obtained also for Phase 6

BS - Infrastructures and Transportation 25th European Workshop on Thermal & ECLS S/W, 8-9 Nov. 2011

ThalesAlenia A Trade / France Space OPTIMIZATION / DoE CORRELATION						
Starting from DoE res data, with a decreasing (SA) panel Delta-T.	ults, another (of MOSIF_EF	Optimization v PS_12 but also	vas performed o an increasing	over Phase 6 of Solar Array		
Results of Phase 4 opt MMO Solar Array pane	imization are p Is Delta-T	preferred since	e minimize the i	most important		
	Standard Correlation (Phase 4)	Standard Correlation (Phase 6)	Optimization Phase 4 Results	Optimization Phase 6 Results		
MOSIF_EPS_12 MOSIF_GAP_EPS MOSIF_SS_EPS	0.14 0.024 0.019	0.14 0.024 0.019	0.1259 0.0258 0.0186	0.1200 0.0269 0.0211		
Mean_DT_MLI Mean_DT_MLI_support Mean_DT_SA_panel	3.1 3.1 1.0	7.5 2.7 0.1	0.056 1.89 1.98	0.731 0.541 3.725		
BS - Infrastructures and Transportation 25th European Workshop on Thermal & ECLS S/W	Selected Value	es		THALES		
ThalesAlenia A These / Frynecourice Corres y Space			C	ONCLUSIONS		
Computes the actu correlation (ΔT and S example	DoE advanta al emissivity Standard Dev	ges w.r.t. Sta values tha iations) ⇔ M	andard approa at minimize t 20SIF_EPS_1	ONCLUSIONS		
 Computes the acture correlation (ΔT and S example Time saving: integra working days inster correlation method. 	<u>DoE advanta</u> al emissivity Standard Dev ated iSight r ad of seven	ges w.r.t. Sta values tha iations) ⇒ M nodel build-u ral weeks r	andard approa at minimize t OSIF_EPS_1 up and run t needed for t	ONCLUSIONS ach: he target of 2 decreasing rook about 7 the standard		
 Computes the acture correlation (ΔT and Sexample Time saving: integration working days instead correlation method. Results obtained wassessed 	<u>DoE advanta</u> al emissivity Standard Dev ated iSight r ad of seven b rith Optimiza	ges w.r.t. Sta values tha iations) ⇔ M nodel build- ral weeks r ut tion/DoE an	andard approa at minimize t IOSIF_EPS_1 up and run t needed for t	ONCLUSIONS		
 Computes the acture correlation (ΔT and Sexample) Time saving: integration (ΔT and Sexample) Time saving: integration method. Results obtained we assessed Always verify that the realistic 	<u>DoE advanta</u> al emissivity Standard Dev ated iSight r ad of seven b rith Optimiza e optimal sol	ges w.r.t. Sta values tha iations) ⇒ M nodel build- ral weeks r ut tion/DoE an ution is num	andard approa at minimize t <i>IOSIF_EPS_1</i> up and run t needed for t nalyses must	ONCLUSIONS		

