Appendix D

New Technology for Modeling and Solving Radiative Heat Transfer using TMG

Christian Ruel (MAYA, Canada)

Abstract

As engineers increasingly rely on numerical models within the framework of a collaborative development process, demands on solution performance are becoming much more severe. In order to effectively address these demands, we believe that a massive, quantum improvement in the solution speed of spacecraft thermal analysis systems is required. To achieve such a breakthrough, MAYA has undertaken the parallelization of the TMG software system, enabling full exploitation of multiprocessing computer environments (consisting of multiprocessor servers or networked workstations or clusters).

Maya is also developing an innovative numerical method for the simulation of radiative heat transfer in cryogenic systems, based on the radiosity method, in which the radiating spectrum is discretized into spectral bands. A surface at a given temperature will radiate and absorb in all the bands, but the coefficients of emissivity and absorptivity - while equal to each other in a given band - will vary from one band to the next.

e.g. 3 elements, 5 bands (N=5) looks like this:

Nongray Validation

Test Number		Band limits (micrometers)					T ₁ =	$T_1 = Element 1$	
Case	of Bands	λ	λ	λ2	λ	λ ₄	Tempe	rature (sink)
2.0	1	-	-	-	-	-		100 K	
2.1	2	0	40.0	4.E3	-	-		100 K	
2.2	2	0	40.0	4.E3	-		-	100 K	
2.3	2	0	40	4.E3	6.E3			50 K	
2.4	4	0	40.0	80.0	120.0	1.2E5		60 K	
	Number of Bands	Band Emissivities (element 1) Band I			Band E	Emissivities (element 2)			
	Dallus	ε ₁	ε2	ε3	ε ₄	ε	ε2	ε3	ε ₄
	1	0.5	-	-	-	0.5	-	-	-
	2	0.1	0.25	-	-	0.1	0.2	-	-
	2	0.5	0.05	-	-	0.1	0.2	-	-
	2	0.1	0.25	-	-	0.1	0.2	-	-
	4	0.1	0.25	0.14	5 .05	0.3	0.25	0.2	0.18
	Case 2.0 2.1 2.2 2.3 2.4	vase of Bands 2.0 1 2.1 2 2.2 2 2.3 2 2.4 4 Number of Bands 1 2 2 2 2 2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Name of Bands λ_0 λ_1 λ_2 λ_3 λ_4 2.0 1 - 0.5 - - - 0.1 - - 0.1 - - 0.1 - 0.1 - 0.1<	xase of Bands λ_0 λ_1 λ_2 λ_3 λ_4 Tempe 2.0 1 -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Test Case	Number of Bands	Target T	number of iterations	Computed T
1.0	2	1000 K	40	1000.03 K
1.1	2	1000 K	93	1000.03 K
1.2	2	1000 K	34	1000.06 K
1.3	3	1000 K	42	999.99 K
1.4	3	40 K	39	40.003 K
1.5	4	25 K	58	24.998 K

22nd European Workshop on Thermal and ECLS Software

Two Flat Plates and Space

Two Plates in Space: Results

- T2 is temperature computed with nongray method
- Q2,abs and Q2,emit are computed analytically from T2
- Method should yield Q2,emit=Q2,abs

	Test Case	T ₁ (input)	T ₂ (result)	$Q_{2,emit}(T_2)$ (analytic)	$\begin{array}{c} Q_{2,abs}(T_2) \\ (analytic) \end{array}$	% error	
	2.0	100 K	77.95 K	0.419 W	0.415 W	0.9%	
	2.1	100 K	88.91 K	0.911 W	0.904 W	0.8 %	
	2.2	100 K	73.19 K	0.284 W	0.281 W	-0.8%	
	2.3	50 K	40.05 K	0.0289 W	0.0286 W	0.8%	
	2.4	60 K	46.17 K	0.0555 W	0.0560 W	-0.85%	
	L	·				٢	18
12		22 nd	European Worksho	op on Thermal and	ECLS Software		

Nongray: Sample Application

Comparison of Heat Loads into Cryocooler

Case	Heat Load into 31K Cryocooler
Classical Gray Analysis	0.168 W
Gray with ε(T)	0.159 W
Nongray 2 bands	0.209 W

Remarks:

14

- The 2 band nongray calculation shows the cryocooler needs to draw about 24% more heat than that shown by the gray analysis.
- · Temperature dependent emissivity gives worse results!
 - 22nd European Workshop on Thermal and ECLS Software

MAR

16

22nd European Workshop on Thermal and ECLS Software

Test Series 3: Two Specular Plates Radiating to Space

Test Case	Number of Bands	T ₁ (input)	T_2 (result)	$Q_{2,emit}(T_2)$ (analytic)	$\begin{array}{c} Q_{2,abs}(T_2) \\ (analytic) \end{array}$	% error
3.0	1	100 K	79.29 K	1.34 W	1.34 W	-0.2E-3 %
3.1	2	60 K	31.37 K	1.08E-2 W	1.08E-2 W	-0.6E-2 %
3.2	4	60 K	34.09 K	1.54E-2 W	1.54E-2 W	-0.02%
3.3	11	80 K	44.18 K	7.20E-2 W	7.21E-2 W	-0.07%

MARA

68

Cryogenic Optics with Radiative Heating								
Case	Solar Bands	Solar Load on Lens (W)	Solar Load on Mirror (W)	Solar Load on Sample (W)	Heat Flow into Cryocooler (W)			
Gray	1	1.29	0.515	0.915	0.958			
3 bands	2	1.47	0.404	0.860	0.903			
4 bands	3	1.24	0.698	0.780	0.823			
5 bands	4	1.29	0.788	0.639	0.683			
9 bands	8	1.32	0.748	0.650	0.693			
17 bands	16	1.30	0.854	0.570	0.613			
33 bands	32	1.29	0.872	0.559	0.603			

Parallel Computing

Motivation

24

- Analysts are consistently building bigger, higher fidelity models, and still want faster throughput
- · Improvement in processor clock rates is becoming asymptotic
- · Multi-core processors are becoming more predominant
- · Many users wish to make use of networked computers and/or clusters

Possible Approaches

- · Shared memory
 - Parallel processes or threads share same data space
- Distributed memory
 - Parallel processes each have dedicated memory and communicate via message passing.

22nd European Workshop on Thermal and ECLS Software

MAR

Parallel Computing	\checkmark
MAYA has begun parallelizing its solvers using the <i>Distributed Memory</i> paradigm	
 The DMP approach accommodates user's existing hardware 	
 With DMP, parallelization is achievable with multicore, multi-processor, networ <i>cluster</i> architectures; SMP requires multicore or multi-CPU boxes (excludes n and clusters) 	k, and etworks
 All users with a network could in principle use DMP today; not so with SMP 	
 DMP scalability not as limited by available hardware 	
 With SMP, if the best machine available is a quadcore processor, no more tha processors can be used 	n 4
 Given a scalable algorithm and a good network or hub, more than 4 processor easily be brought to bear on a solve 	s can
 DMP is more cost effective to implement in existing code 	
 SMP often requires paradigm shift & re-architecture, DMP not as much 	
27 22 nd European Workshop on Thermal and ECLS Software	MABR

DMP Parallelization of the Hemicube Method **Hemiview Parallel Architecture** Master/Slave system MEMORY MEMORY MEMORY Master: GPU CPU GPU CPU GPU CPU Performs all I/O - Sends model to slaves **NETWORK** Instructs slaves which VFs to compute MEMORY MEMORY - Receives VFs from slaves and MEMORY writes results to single file GPU GPU CPU GPU CPU CPU - Computes some VFs when it has time **Slave processes** DISK Slave do not access local disk - Receives model, instructions Master process with access to - Computes VF's local disk - Sends VF's to Master Load balancing is performed, assuring all processes are busy MAMA 22nd European Workshop on Thermal and ECLS Software 30

Parallelization of the View Factor Module

Parallelization of View Factor Computation

- View factor algorithms are *inherently parallel*, because view factors do not depend on one another
- Each process holds the model of the entire radiation environment, which independently computes a subset of the view factors

VUFAC module

32

- Contour integral method
- Shadowed View Factors using element subdivision
- Orbit Calculations
- Radiative Heat Loads
- Ray Tracing: deterministic and Monte-Carlo
- Thermal Coupling Calculations

22nd European Workshop on Thermal and ECLS Software

Thank you