

document title/ titre du document

CATALOGUE OF BENCHMARK CASES FOR THE ANALYSIS OF INFLATABLE STRUCTURES

TOS-MCS prepared by/préparé par

reference/réference issue/*édition* revision/révision

date of issue/date d'édition

status/*état*

Document type / type de document

Distribution/distribution

TOS-MCS/2003/780/ln/SL

June 16th, 2003

Technical Note

a

APPROVAL

Title titre	Catalogue of Benchmark C Structures	ases for the Analysis o	issue 1 revision O revision			
author	TOS-MCS			date June 16th,		
auteur	TOD MED			date 2003		
approved by	Torben Henriksen			date		
approuvé by				date		
		NGE L				
reason for change	/raison du changement	issue/ <i>issue</i>	revision/ <i>revision</i>	date/ <i>date</i>		
	CHAN	GE REC	ORD	1		
		Issue: 1 Revision: 0				
reason for change/ <i>raison du changement</i>		page(s)/page(s)	paragraph(s)/paragraph(s)			

TABLE OF CONTENTS

1	INTRODUCTION	4
2	2 LOADS, ENVIRONMENT AND ANALYSES	4
	2.1 Loads	4
	2.2 Environments	4
	2.3 Output	4
3	B LIFE CYCLE	5
4	ANALYSES REQUIREMENTS	5
	BUILDING BLOCKS	
•		
6	DEFINITION OF BENCHMARK CASES	6

1 INTRODUCTION

This document presents a catalogue of benchmark cases for the analysis of inflatable structures. Its goal is to define benchmark cases, which will be used to determine suitable numerical methods and software for the analysis of inflatable structures.

2 LOADS, ENVIRONMENT AND ANALYSES

This chapter presents the types of loads, environment and analyses to be considered during the life of a space structure.

2.1 Loads

The types of loads to be considered are:

<u>Pres</u>sure: Internal or external, it can be constant or varying (pressurisation, pressure

decay)

<u>Stat</u>ic: Static accelerations (translational and/or rotational)

<u>Dyn</u>amic: Dynamic accelerations (translational and/or rotational)

Thermal: Constant temperature or temperature gradient along the structure

Local: Punctual force applied to membrane or local load applied to structure (including

restrain force during deployment)

Shock: Shock spectrum applied to the structure

Imp act: Hypervelocity impact on the structure (MMOD)

2.2 Environments

The types of environment to be considered are:

Ground: air and gravity **S**pace: vacuum and μ-gravity

2.3 Output

The types of output to be considered are:

<u>Disp</u>lacements: Depending of the case: static, cinematic, dynamic, thermo-elastic or wrinkling pattern and amplitude

Stress/strain: Depending of the case: static, cinematic, dynamic, thermo-elastic and including the effect of wrinkling

Eigenmodes: Eigenvalue and eigenvectors

Buckling: Eigenvalue and buckling shape

Shock: Assessment of the damage due to shock

Impact: Assessment of the damage due to impact

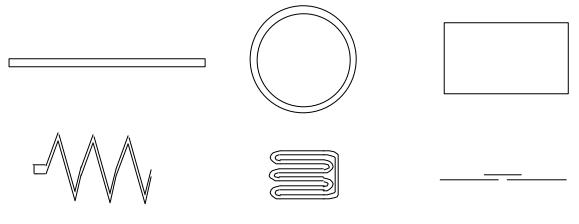
3 LIFE CYCLE

In this chapter, each step of the life cycle of an inflatable structure is presented with the associated environment and applied loads.

Life step	Environment	Loads	Remark
Manufacturing G		Ther, Loc	Seams, welds,
Handling/packaging	G	Loc, Pres	Venting for packaging
Qualification testing	G	Stat, Dyn, Sh, Ther, Pres, Loc	Vacuum tests may be considered Two configurations: folded/deployed
Launch	$G \rightarrow S$	Stat, Dyn, Sh, Ther, Pres	Similar to folded qualif. tests Ext. pressure decay
Deployment	S	Pres, Ther, Loc	Restrain forces to be considered
Deployed, pressurised, unrigidised	S	Pres, Ther, Stat, Imp	AOCS loads
Deployed, vented, rigidised	S	Ther, Stat, Imp	AOCS loads

4 ANALYSES REQUIREMENTS

The following table shows the analyses requirements along the life cycle


Life step	Disp	Str	Eig	Buck	Sh	Imp
Manufacturing		X				
Handling/packaging	X	X		X		
Qualification testing:						
static folded	X	X				
dynamic folded	X	X	X			
shock folded					X	
thermal folded	X	X				
deployment	X	X				
static deployed	X	X		X		
dynamic deployed	X	X	X			
thermal deployed	X	X	X	X		
Launch	X	X	X		X	
Deployment	X	X		X		
Deployed, pressurised, unrigidised	X	X	X			X
Deployed, vented, rigidised	X	X	X	X		X

5

BUILDING BLOCKS

The following building blocks shall be considered for an inflatable structure:

Beam (deployed, stowed)

Torus (deployed, stowed) Membrane (stretched, joint)

6 DEFINITION OF BENCHMARK CASES

Based on the information presented in the previous chapters, it is possible to define a list of benchmark cases for the numerical analyses of inflatable structures.

#	Name	Building block	Loads	Environment	Analyses	Softwares	Priority
1	manuf. stresses		Ther	G	Str	NASTRAN SAMCEF ABAQUS Std ANSYS	III
2	deployment of a beam. Subcases: - Z-folding - accordion - rolled		Pres, Ther	1- G 2- S	Disp, Str	DYTRAN ABAQUS Exp LS-DYNA RADIOSS PAM- CRASH	I
3	deployment of a torus. Subcases: - Z-folding - rolled		Pres, Ther	1- G 2- S	Disp, Str	DYTRAN ABAQUS Exp LS-DYNA RADIOSS PAM- CRASH	I
4	controlled deployment of a beam. Subcases: - Z-folding - accordion - rolled		Pres, Loc, Ther	1- G 2- S	Disp, Str	DYTRAN ABAQUS Exp LS-DYNA RADIOSS PAM- CRASH	I

#	Name	Building block	Loads	Environment	Analyses	Softwares	Priority
5	controlled deployment of a torus. Subcases: - Z-folding - rolled		Pres, Loc, Ther	1- G 2- S	Disp, Str	DYTRAN ABAQUS Exp LS-DYNA RADIOSS PAM- CRASH	I
6	analyses of a deployed pressurised beam		Pres, Stat, Ther, Loc, Dyn		Disp, Str, Buck, Eig		I
7	analyses of a deployed pressurised torus		Pres, Stat, Ther, Loc, Dyn		Disp, Str, Buck, Eig	NASTRAN SAMCEF ABAQUS Std ANSYS DYTRAN ABAQUS Exp	I
8	analyses of a stretched membrane. Subcases: - point loading - edge loading		Stat, Loc, Dyn, Ther	1- G 2- S	Disp, Str, Eig	NASTRAN SAMCEF ABAQUS Std ANSYS	I

#	Name	Building block	Loads	Environment	Analyses	Softwares	Priority
9	analyses of a deployed vented beam		Ther, Stat, Loc, Dyn	1- G 2- S	Disp, Str, Eig, Buck	NASTRAN SAMCEF ABAQUS Std ANSYS	I
10	analyses of a deployed vented torus		Ther, Stat, Loc, Dyn	1- G 2- S	Disp, Str, Eig, Buck	NASTRAN SAMCEF ABAQUS Std ANSYS	I
11	MMOD impact on pressurised beam		Pres, Imp	S	Imp	AUTODYN DYTRAN	III

Inflation of a flattened tube made of isotropic material Objectives Predict the final shape of an inflated tube. Particular issues Modelisation of thin membranes.

Input

Geometry, boundary conditions and loading

The tube can be:

- closed at both ends 2-1a,
- opened at both ends 2-1b,
- a mix of these two 2-1c

Material properties

The tube is made of Mylar[®] or polyamide film

Output

Final shape of the tube (in particular at the creases and closed end). Stresses of the membranes elements.

References

Analysis

1) Dynamics of Large Reflectors Dynamic Analysis Study for an Inflatable Space Rigidized Structure Type of Reflector (ESTEC final report 8455/89/NL/PM(SC))

Testing

1) Dynamics of Large Reflectors Dynamic Analysis Study for an Inflatable Space Rigidized Structure Type of Reflector (ESTEC final report 8455/89/NL/PM(SC))

Geometry							2-1a	
Stowed Structure				Deployed S	tructure			
Width	1	m	0.235	Diameter		m	0.150	
Total Length	1	m	3.0	Length		m	3.0	
Thickness	m(1	10 ⁻³)	0.05	Thickness		m	N/A	
Volume	n	n^3	N/A	Volume		m ³	N/A	
Sketch Z X A		A B	В	Skretch	of The True Annual contraction of the State			
Properties								
Material: Mylar®			ı	pressure applied directly on the elements				
Type		-	92A	Density		kg m ⁻³	N/A	
Density	Kg	m^{-3}	1390	ср		J kg ⁻¹ K ⁻¹	N/A	
Yield Stress	F	Pa		Rgas		J kg ⁻¹ K ⁻¹	N/A	
Maximum Strain		-		Temperature	2	K	N/A	
Young Modulus	Pa	(10^6)	4805.2	Remarks				
Poisson's Ratio		-	0.3					
Loads and Boundary Co	nditi	ons						
Loads applied on the element	nent	S		Boundary (Conditions			
Pressure of Inflated Struct	ure	Pa	6065	Geometric	al Entity	Constra	ints	
Temperature Pressurized C	Gas	K	N/A	Line	A-B	clamp	ed	
Inflation Time		sec	0.2	Line A	.'-B'	free		
Remarks: pressure variation		\ 11	0.2					
Time(s) 0.0 0.1 Value (Pa) 0.0 1000		0.11	0.2 6065	Remarks iso	static Boun	dary Conditio	ons	
Environment								
Environmental Pressure	nmental Pressure Pa 0							
Gravity			m	$\mathrm{m}\;\mathrm{s}^{-2}$ 0				
Temperature]	K		N/A		

Geometry							2-1b	
Stowed Structure				Deployed Structure				
Width	n	n	0.157	Diameter		m	0.1	
Total Length	n	n	3.0	Length		m	3.0	
Thickness	m (1	0-3)	0.05	Thickness		m	N/A	
Volume	n	n^3	N/A	Volume		m ³	N/A	
Sketch: the points C and D mixed up at t=0.0s)') are	Sketch	The second of the control of the con					
Properties								
Material: Mylar®				pressure applied directly on the elements				
Type	-	-	92A	Density		kg m ⁻³	N/A	
Density	Kg	m^{-3}	1390	ср		J kg ⁻¹ K ⁻¹	N/A	
Yield Stress	P	a		Rgas		J kg ⁻¹ K ⁻¹	N/A	
Maximum Strain	-	-		Temperature	;	K	N/A	
Young Modulus	Pa (10^{6})	4805.2	Remarks				
Poisson's Ratio	-	-	0.3					
Loads and Boundary Con			j					
Loads applied on the eler	nents	3		Boundary C	Conditions			
Pressure of Inflated Struct	ıre	Pa	5000	Geometric	al Entity	Constra	ints	
Temperature Pressurized (Gas	K	N/A	Lines A-B, 1	B-C, C-D,	Y-axi	S	
Inflation Time		sec	1.0	Points A	and B	Z-axis	S	
Remarks: pressure variation Time(s) 0.0 0.01	0	0.1	1.0	Points C	and D	X-axi	S	
Value (Pa) 0.0 5000		000	5000	Remarks: iso	ostatic Bound	lary Condition	ons	
Environment								
Environmental Pressure			F	Pa 0.0				
Gravity			m	m s ⁻² 0.0				
Temperature			I	ζ		N/A		

Geometry						2-1c	
Stowed Structure			Deployed Structure				
Width	m	0.157	Diameter		m	0.1	
Total Length	m	0.5	Length		m	0.5	
Thickness	m (10 ⁻³)	0.1	Thickness		m	N/A	
Volume	m^3	N/A	Volume		m ³	N/A	
Sketch: the points C and D mixed up at t=0.0s Z Y X Properties	(C' and	D') are	Sketch	Filtre — John Merchalden Mit March 11 of Total American and Provided And Total American and Provided And Total American and Provided And Total American And Total	a retire, how. / hronin	14 255 min 55	
Material: Polyamide			pressure applied directly on the elements				
Туре	_		Density		kg m ⁻³	N/A	
Density	Kg m ⁻³	1130	ср		J kg ⁻¹ K ⁻¹	N/A	
Yield Stress	Pa		Rgas		J kg ⁻¹ K ⁻¹	N/A	
Maximum Strain	-		Temperature	;	K	N/A	
Young Modulus	Pa (10 ⁶)	2000	Remarks	_			
Poisson's Ratio	-	0.33	1				
Loads and Boundary Con	ditions						
Loads applied on the elen	nents		Boundary (Conditions			
Pressure of Inflated Structu	re Pa	5000	Geometric	al Entity	Constra	ints	
Temperature Pressurized G	as K	N/A	Poin	t A	X-Y-Z-axis	+ MX	
Inflation Time	sec	0.01	Poin	t B	Y-Z-axis -	⊦ MX	
Remarks: pressure variation Time(s) 0.0 0.01	\neg		Line A	.'-B'	free		
Value (Pa) 0.0 5000			Remarks: iso	ostatic Bound	lary Condition	ons	
Environment			<u> </u>				
Environmental Pressure		I	Pa		0.0		
Gravity		m	$n s^{-2}$ 0.0				
Temperature			K		N/A		

Deployment of a Z-folded beam made of isotropic material

2-2

page 14 of 43

Objectives

Predict the deployment and the final shape of an inflated Z-folded beam.

Particular issues

Modelisation of thin shells and large displacement dynamic analysis.

Input

Geometry, boundary conditions and loading

A Z-folded beam.

The beam is fixed at one end.

An internal pressure is applied to inflate the beam.

and Material properties

The tube is made of a polyamide film.

Output

deployment envelope (vs. time) and final shape.

References

Analysis

- 2) Dynamics of Large Reflectors Dynamic Analysis Study for an Inflatable Space Rigidized Structure Type of Reflector (ESTEC final report 8455/89/NL/PM(SC))
- 3) Deployment Dynamics of Inflatable Tube (Y Miyazaki, M Uchiki, AIAA-2002-1254)
- 4) Deployment Simulation of Ultra-Lightweight Inflatable Structures (JT Wang, AR Johnson, AIAA-2002-1261)

Testing

- 1) Dynamics of Large Reflectors Dynamic Analysis Study for an Inflatable Space Rigidized Structure Type of Reflector (ESTEC final report 8455/89/NL/PM(SC))
- 2) Deployment Dynamics of Inflatable Tube (Y Miyazaki, M Uchiki, AIAA-2002-1254)

Geometry							2-2a	
Stowed Structure				Deployed Structure: folded tube				
Width	1	m		Diameter		m	2.4x10 ⁻²	
Total Length	1	m		Length		m	0.2	
Thickness	1	m		Thickness		m	1.04x10 ⁴	
Volume	n	n^3		Volume		m^3	N/A	
Sketch Rigid cylinder		Sketch						
Properties								
Material				Gas: N2				
Type		-	?	Density		kg m ⁻³		
Density	kg	m^{-3}	910	ср		J kg ⁻¹ K ⁻¹		
Yield Stress	F	Pa		Rgas		J kg ⁻¹ K ⁻¹	296.798	
Maximum Strain		-		Temperature	e	K	300.68	
Young Modulus	Pa ((10^6)	108	Remarks				
Poisson's Ratio		-	0.30					
Loads and Boundary Con	nditi	ons						
Loads				Boundary (Conditions			
Pressure of Inflated Structu	ıre	Pa	?	Geometric	cal Entity	Constra	ints	
Temperature Pressurized C	Gas	K	300.68	lower	end	clamp	ed	
Inflation Time		sec	?					
Remarks: Rigid cylinder mass: 75.7 g, radius 15mm	s 30mm	Remarks						
Environment								
Environmental Pressure				Pa 1.		1.03×10^5	$.03x10^5$	
Gravity			m s ⁻² 10 ⁻⁴			10 ⁻⁴		
Temperature				K		293		

Geometry							2-2b	
Stowed Structure				Deployed Structure: folded tube				
Width	1	n		Diameter		m	9.7x10 ⁻²	
Total Length	1	n		Length		m	0.610	
Thickness	ľ	n		Thickness		m	1.52x10 ⁴	
Volume	n	n^3		Volume		m^3	N/A	
Sketch No. 80in	Rigid work.	77,	Node A Node A O O O O O O O O O O O O O	Sketch				
Properties								
Material: polyethylene				Gas: air				
Type		-	PET	Density		kg m ⁻³		
Density	kg	m ⁻³	913	ср		J kg ⁻¹ K ⁻¹		
Yield Stress	F	Pa		Rgas		J kg ⁻¹ K ⁻¹		
Maximum Strain		-		Temperature	e	K	294.26	
Young Modulus	Pa ((10^6)	172	Remarks	:-1-4- 20 07	1 /11		
Poisson's Ratio		-	0.25	molecular w	eight: 28.97	kg/kmole		
Loads and Boundary Con	nditio	ons						
Loads				Boundary (Conditions			
Pressure of Inflated Structu	ure	Pa	16547	Geometric	cal Entity	Constra	ints	
Temperature Pressurized C	Gas	K	294.26	see dra	nwing			
Inflation Time		sec	0.19					
Remarks: mass flow 4.54x10 ⁻² x t kg		Remarks						
Environment								
Environmental Pressure			F	Pa 0				
Gravity			m	$\mathrm{m}\;\mathrm{s}^{-2}$ 0				
Temperature]	K		293		

Geometry							2-2c	
Stowed Structure				Deployed Structure				
Width	r	n	0.160	Diameter		m	0.100	
Total Length	r	n	-	Length		m	3.005	
Thickness	r	n	510 ⁻⁵	Thickness		m	-	
Volume	n	n^3	~1.610 ⁻³	Volume		m^3	0.024	
Sketch (dimensions in mm) folds	Sketch (dime	ensions in m	m)				
Properties								
Material: Polyamide				Gas: N ₂				
Type		-	ı	Density		kg m ⁻³	1250	
Density	kg	m ⁻³	1120	ср		J kg ⁻¹ K ⁻¹	1040	
Yield Stress	Pa (10^{6})	90	Rgas		J kg ⁻¹ K ⁻¹	297	
Maximum Strain		-		Temperature	e	K	293	
Young Modulus	Pa (10^{6})	1500	Remarks				
Poisson's Ratio		-	0.3					
Loads and Boundary Con	nditio	ons						
Loads				Boundary (Conditions			
Pressure of Inflated Structu	ure	Pa	5000	Geometric	al Entity	Constra	ints	
Temperature Pressurized C	Gas	K	-	Rigid	part	clamp	ed	
Inflation Time		sec	1.0					
Remarks Inflation through the rigid part				Remarks See "rigid part of the beam" in sketch				
Environment								
Environmental Pressure					Pa $1.013 \times 10^5 / \sim 0$			
Gravity			m	s^{-2}	-9.81 / ~0 / 9	.81 (direction o	of z-axis)	
Temperature]	K 293				

Geometry							2-2d	
Stowed Structure				Deployed Structure				
Width]	m	-	Diameter		m	0.150*	
Total Length	1	m	3.000	Length		m	3.000	
Thickness	1	m	5x10 ⁻⁵	Thickness		m	5x10 ⁻⁵	
Volume	r	n^3	0.002	Volume		m ³	0.053	
Sketch (Note: each fold ha	gth)		n perimeter of equal to the se tructure					
Properties								
Material: Mylar				Gas: N ₂				
Туре		-	92A	Density		kg m ⁻³	-	
Density	kg	m ⁻³	1390	ср		J kg ⁻¹ K ⁻¹	1040	
Yield Stress	I	Pa	-	Rgas		J kg ⁻¹ K ⁻¹	297	
Maximum Strain		-	-	Temperature		K	293	
Young Modulus	Pa	(10^6)	4900	Remarks				
Poisson's Ratio		-	0.3					
Loads and Boundary Con	nditi	ons						
Loads				Boundary (Conditions			
Pressure of Inflated Structu	ıre	Pa	-	Geometric	cal Entity	Constra	ints	
Temperature Pressurized C	Gas	K	ı	Lower	end	clamp	ed	
Inflation Time		sec	1.0					
Remarks Mass inflow: 9.14x10 ⁻² Kg. Inflation through the lower	gen	Remarks rigid plane below structure						
Environment				10.105 / 0				
Environmental Pressure				Pa $1.013x10^5 / \sim 0$				
Gravity					s^{-2} 9.81 / ~0			
Temperature]	K	293			

Deployment of a rolled beam made of isotropic material

2-3

Objectives

Predict the deployment and the final shape of an inflated rolled beam.

Particular issues

Modelisation of thin shells and large displacement dynamic analysis.

Input

Geometry, boundary conditions and loading

A rolled beam.

The beam is fixed at one end.

An internal pressure is applied to inflate the beam.

Material properties

The tube is made of a polyamide film.

Output

deployment envelope (vs. time) and final shape.

References

Analysis

- 1) Dynamics of Large Reflectors Dynamic Analysis Study for an Inflatable Space Rigidized Structure Type of Reflector (ESTEC final report 8455/89/NL/PM(SC))
- 2) Deployment Simulation of Ultra-Lightweight Inflatable Structures (JT Wang, AR Johnson, AIAA-2002-1261)

Testing

1) Dynamics of Large Reflectors Dynamic Analysis Study for an Inflatable Space Rigidized Structure Type of Reflector (ESTEC final report 8455/89/NL/PM(SC))

Geometry							2-3a	
Stowed Structure				Deployed Structure: rolled tube				
Width		m		Diameter		m	9.7x10 ⁻²	
Total Length		m		Length		m	0.610	
Thickness		m		Thickness		m	1.52x10 ⁴	
Volume	1	m ³		Volume		m^3	N/A	
Sketch		Sketch						
Properties								
Material: polyethylene				Gas: air				
Туре		-	PET	Density		kg m ⁻³		
Density	kg	m ⁻³	913	ср		J kg ⁻¹ K ⁻¹		
Yield Stress]	Pa		Rgas		J kg ⁻¹ K ⁻¹		
Maximum Strain		-		Temperature	e	K	294.26	
Young Modulus	Pa	(10^6)	172	Remarks				
Poisson's Ratio		-	0.25	molecular weight: 28.97 kg/kmole				
Loads and Boundary Co	nditi	ions						
Loads				Boundary (Conditions			
Pressure of Inflated Struct	ure	Pa	55158	Geometric	cal Entity	Constra	ints	
Temperature Pressurized C	Gas	K	294.26	inner	end	2 corners c	lamped	
Inflation Time		sec	0.35					
Remarks: mass flow 4.54x10 ⁻² x t kg		Remarks						
Environment								
Environmental Pressure F				Pa 0				
Gravity			m	$1 s^{-2}$ 0				
Temperature				K	293			

Geometry							2-3b	
Stowed Structure				Deployed Structure				
Width	n	n	0.167	Diameter		m	0.100	
Total Length	n	n	-	Length		m	3.000	
Thickness	n	n	5x10 ⁻⁵	Thickness		m	-	
Volume	n	n^3	~1.6x10 ⁻³	Volume		m ³	0.024	
Sketch (dimensions in mm	.)			Sketch (dimer	nsions in m	m)		
End cap diameter:75 mm End cap+folded structure diameter:140mm	2 000	rigid part of the beam	3000					
Properties								
Material: Polyamide		Gas: N ₂						
Туре	-	-	-	Density		kg m ⁻³	1250	
Density	kg	m ⁻³	1120	ср		J kg ⁻¹ K ⁻¹	1040	
Yield Stress	Pa (10^{6})	90	Rgas		J kg ⁻¹ K ⁻¹	297	
Maximum Strain	•	-	ı	Temperature		K	293	
Young Modulus	Pa (10^{6})	1500	Remarks				
Poisson's Ratio	•	-	0.3					
Loads and Boundary Con	nditio	ons						
Loads				Boundary Co	onditions			
Pressure of Inflated Struct	ure	Pa	5000	Geometrica	l Entity	Constra	ints	
Temperature Pressurized C	Gas	K	-	Rigid p	part	clampe	ed	
Inflation Time		sec	1.0					
Remarks Inflation through the rigid part				Remarks See "rigid part of the beam" in sketch				
Environment								
Environmental Pressure F				Pa $1.013 \times 10^5 / \sim 0$				
Gravity			m	s^{-2} -9.81 / ~0 / 9.81 (direction of z-ax		z-axis)		
Temperature]	K 293				

Geometry							2-3c	
Stowed Structure				Deployed Structure				
Width	1	n	-	Diameter	m	0.150*		
Total Length	1	n	3.000	Length		m	3.000	
Thickness	1	n	5x10 ⁻⁵	Thickness		m	5x10 ⁻⁵	
Volume	n	n^3	0.002	Volume		m^3	0.053	
Sketch (Note: structure makes	e of 5 π)		n perimeter of equal to the so tructure					
Properties								
Material: Mylar				Gas: N ₂				
Type		-	92A	Density		kg m ⁻³	-	
Density	kg	m^{-3}	1390	ср		J kg ⁻¹ K ⁻¹	1040	
Yield Stress	F	Pa	-	Rgas		J kg ⁻¹ K ⁻¹	297	
Maximum Strain		-	-	Temperature		K	293	
Young Modulus	Pa ((10^6)	4900	Remarks				
Poisson's Ratio		-	0.3					
Loads and Boundary Con	nditi	ons						
Loads				Boundary (Conditions			
Pressure of Inflated Structu	ıre	Pa	-	Geometric	al Entity	Constra	ints	
Temperature Pressurized C	as	K	-	Outside	er end	clamp	ed	
Inflation Time		sec	1.0					
Remarks Mass inflow: 9.14x10 ⁻² Kg/s of Nitrogen Inflation through the lower end Environment				Remarks rig	id plane belo	w structure		
Environmental Pressure			F	Pa 1.013x10 ⁵ /~0				
Gravity			m	s ⁻² -9.81 / ~0				
				K 293				

Deployment of a rolled torus made	de of isotropic material	3-1
Objectives		
Predict the deployment and the final shape of	f an inflated rolled torus.	
Particular issues		
Modelisation of thin shells and large displace	ement dynamic analysis.	
Input		
Geometry, boundary conditions and	Material properties	
loading		
A rolled torus.	The tube is made of a polyamide t	film.
The torus is fixed at one point.		
An internal pressure is applied to inflate the		
torus.		
\\ //		
Output		
deployment envelope (vs. time) and final sha	pe.	
References		
Analysis	Testing	
Anatysis	resung	

Geometry							3-1a
Stowed Structure				Deployed Structure			
Width	n	n	0.157	Diameter	Diameter m		
Total Length	n	n	-	Length		m	-
Thickness	n	1	5x10 ⁻⁵	Thickness		m	-
Volume	n	3	~0	Volume		m ³	7.3x10 ⁻²
Sketch (dimensions in mm	1)			Sketch (dim	ensions in m	m)	
Z			\$1500 \$	A-A 0190			
Properties							
Material: Polyamide				Gas: N ₂			
Туре	-		-	Density		kg m ⁻³	1250
Density	kg	m ⁻³	1120	ср		J kg ⁻¹ K ⁻¹	1040
Yield Stress	Pa (10 ⁶)	90	Rgas		J kg ⁻¹ K ⁻¹	297
Maximum Strain	-	•	1	Temperature	e	K	293
Young Modulus	Pa (10 ⁶)	1500	Remarks			
Poisson's Ratio	-		0.3				
Loads and Boundary Co	nditio	ns					
Loads				Boundary Conditions			
Pressure of Inflated Struct	ure	Pa	5000	Geometric	cal Entity	Constra	ints
Temperature Pressurized (Gas	K	-				
Inflation Time		sec	6.0				
Remarks							
Inflation through fixed point				Remarks See fixed point in sketch			
Environment		_					
Environmental Pressure				Pa $1.013x10^5 / \sim 0$			
				s^{-2} -9.81 / ~0 / 9.81 (direction of z-axi			of z-axis)
Temperature]	K 293			

Controlled deployment of a rolled bear	n made of isotropic material	4-1
Objectives		
Predict the deployment and the final shape of	of an inflated rolled beam including	g a control
system for deployment.		
Particular issues		
Modelisation of control deployment.		
Input		
Geometry, boundary conditions and	Material properties	
loading		
A rolled beam including a deployment	The tube is made of a polyamide	film.
control system.		
The beam is fixed at one end.		
An internal pressure is applied to inflate the		
beam.		
_		
$(((\subset \setminus)))$		
Output		
deployment envelope (vs. time) and final sha	ipe.	
	_	
References		
Analysis	Testing	
1) Resistive Deployment of Inflatable	1)	
Structures (M Salama, H Fang, M Lou,		
AIAA-2001-1339)		

·	Bending deflection of an isotropic pressurised beam 6-1							
Objectives								
Predict the deflection of an isotropic pressurised beam subjected to bending.								
Particular issues								
Modelisation of thin shells.								
Wodensation of thin shells.								
Input								
Geometry, boundary conditions and	Material properties							
loading		· · ·						
A straight beam. The beam is fixed at one end.	The tube is made of a polyimide f	ılm.						
An internal pressure is applied to the beam								
and a load is applied at the free end.								
11								
Output								
deflection of the free end.								
References	I Togting							
Analysis	Testing 1) Competition Scaling Property	mtias Of						
1) Geometric Scaling Properties Of Inflatable Structures For Use In Space	1) Geometric Scaling Prope Inflatable Structures For Use							
Solar Power Generation (D Holland, L	Solar Power Generation (D H							
Virgin, M Tinker, K Slade, AIAA-2002-	Virgin, M Tinker, K Slade, AI	AA-2002-						
1264)	1264)							

Geometry							6-1a	
Stowed Structure				Deployed Structure: beam				
Width		m		Diameter		m	0.152	
Total Length		m		Length		m	2.44	
Thickness		m		Thickness		m	5.08x10 ⁻⁵	
Volume	1	n^3		Volume		m ³	?	
Sketch		Sketch						
Properties								
Material: Kapton-HN				Gas: air				
Type		-	PI	Density		kg m ⁻³		
Density	kg	m ⁻³	1420	ср		J kg ⁻¹ K ⁻¹		
Yield Stress]	Pa		Rgas		J kg ⁻¹ K ⁻¹		
Maximum Strain		-		Temperature	e	K		
Young Modulus	Pa	(10^6)	2492	Remarks				
Poisson's Ratio		-	0.34					
Loads and Boundary Con	nditi	ons						
Loads				Boundary (Conditions			
Pressure of Inflated Structu	ıre	Pa	3447	Geometric	cal Entity	Constra	ints	
Upper end lateral load		N	2.7	lower	end	fixed	l	
Remarks: polystyrene end plugs thickness 1.9x10 ² m, Young's modulus 3200 N/mm ² , Poisson's ratio 0.25, density 29.9 kg/m ³ .				Remarks				
Environment								
Environmental Pressure F				Pa 1.013×10^5				
Gravity m				9.81				
				K	293			

Buckling load of an isotropic pressurised beam						
Objectives Predict the buckling load of an isotropic compressive load.	c pressurised beam subjected to	an axial				
Particular issues						
Modelisation of thin shells.						
Input						
Geometry, boundary conditions and	Material properties					
loading A straight beam. The beam is fixed at one end. An internal pressure is applied to the beam and a compressive load is applied at the free end.	The tube is made of a polyimide f	ilm.				
Output						
buckling load of the beam. References						
Analysis	Testing					
1) Geometric Scaling Properties Of Inflatable Structures For Use In Space Solar Power Generation (D Holland, L Virgin, M Tinker, K Slade, AIAA-2002- 1264)	G	In Space folland, L				

Geometry							6-2a
Stowed Structure				Deployed Structure: beam			
Width		m		Diameter	8.89x10 ⁻²		
Total Length		m		Length		m	0.889
Thickness		m		Thickness		m	5.08x10 ⁻⁵
Volume	1	m ³		Volume		m^3	?
Sketch		Sketch					
Properties							
Material: Kapton-HN				Gas: air			
Type		-	PI	Density		kg m ⁻³	
Density	kg	m^{-3}	1420	ср		J kg ⁻¹ K ⁻¹	
Yield Stress]	Pa		Rgas		J kg ⁻¹ K ⁻¹	
Maximum Strain		-		Temperature	2	K	
Young Modulus	Pa	(10^6)	2492	Remarks			
Poisson's Ratio		-	0.34				
Loads and Boundary Co.	nditi	ons					
Loads				Boundary Conditions			
Pressure of Inflated Struct	ure	Pa	6895	Geometric	cal Entity	Constra	ints
Upper end axial load		N	buckl.	lower	end	fixed	ŀ
Remarks: polystyrene end plugs thickness 1.9x10 ² m, Young's modulus 3200 N/mm ² , Poisson's ratio 0.25, density 29.9 kg/m ³ .				Remarks			
Environment							
Environmental Pressure				Pa 1.013×10^5			
				$1.6 \cdot 10^{-2}$ 9.81			
				K	293		

Dynamic Analysis of an isotrop	oic pressurised beam 6-3
Objectives	•
Predict the eigenvalues and mode shapes of a	n isotropic pressurised beam.
Particular issues	
Modelisation of thin shells.	
Input	Makanial
Geometry, boundary conditions and loading	Material properties
A straight beam.	The tube is made of a polyimide film.
The beam is free-free or fixed at one end	
(cantilever). An internal pressure is applied to the beam.	
The second of th	
Output eigenvalues and mode shapes of the beam.	
eigenvalues and mode shapes of the beam.	
-	
References Analysis	Testing
1) Investigation of Nonlinear	1) Investigation of Nonlinea
Pressurization and Modal Restart in	Pressurization and Modal Restart i
MSC/NASTRAN for Modeling Thin	MSC/NASTRAN for Modeling Thi
Film Inflatable Structures (K Smalley, M Tinker, R Fischer, AIAA-2001-1409)	Film Inflatable Structures (K Smalley M Tinker, R Fischer, AIAA-2001-1409
2) Mode Splitting in an Inflated Polyimide	2) Mode Splitting in an Inflated Polyimic
Cylinder with Circumferential Asymmetry (K Slade, L Virgin, M	Cylinder with Circumferentian Asymmetry (K. Slade, L. Virgin, M.
Tinker, AIAA-2001-1411)	Tinker, AIAA-2001-1411)
·	

Geometry							6-3a
Stowed Structure				Deployed Structure: beam			
Width		m		Diameter		m	0.152
Total Length		m		Length		m	2.44
Thickness		m		Thickness		m	5.08x10 ⁵
Volume	1	n^3		Volume		m^3	?
Sketch				Sketch			
Properties							
Material: Kapton				Gas: air			
Туре		-	PI	Density		kg m ⁻³	
Density	kg	m^{-3}	1500	ср		J kg ⁻¹ K ⁻¹	
Yield Stress]	Pa		Rgas		J kg ⁻¹ K ⁻¹	
Maximum Strain		-		Temperature		K	
Young Modulus	Pa	(10^6)	3530	Remarks			
Poisson's Ratio		-	0.30				
Loads and Boundary Co	nditi	ons					
Loads				Boundary Conditions			
Pressure of Inflated Struct	ure	Pa	9653	Geometric	cal Entity	Constra	ints
				free-	free		
Remarks: styrofoam end plug beams are formed by bonding t a 2.54x10 ⁴ m thick epoxy adhes	ayer using	Remarks					
Environment							
Environmental Pressure			I	Pa 0			
Gravity	m			$1 s^{-2}$ 0			
Temperature]	K	293		

Geometry							6-3b
Stowed Structure				Deployed Structure: beam			
Width	:	m		Diameter		m	0.152
Total Length		m		Length		m	2.44
Thickness		m		Thickness		m	5.08x10 ⁻⁵
Volume	r	n^3		Volume		m ³	?
Sketch		Sketch					
Properties							
Material: Kapton				Gas: air			
Type		-	PI	Density		kg m ⁻³	
Density	kg	m ⁻³	1500	ср		J kg ⁻¹ K ⁻¹	
Yield Stress]	Pa		Rgas		J kg ⁻¹ K ⁻¹	
Maximum Strain		-		Temperature		K	
Young Modulus	Pa	(10^6)	3530	Remarks			
Poisson's Ratio		-	0.30				
Loads and Boundary Con	nditi	ons					
Loads				Boundary Conditions			
Pressure of Inflated Struct	ure	Pa	3447	Geometric	cal Entity	Constra	ints
				lower	end	clamp	ed
Remarks: styrofoam end plug beams are formed by bonding to a 2.54x10 ⁴ m thick epoxy adhes	yer using	Remarks					
Environment							
Environmental Pressure	Environmental Pressure F				Pa 1.013×10^5		
Gravity			m	s ⁻² 9.81			
Temperature				K	293		

Dynamic Analysis of an isotropic pressurised torus

7-1

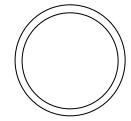
page 33 of 43

Objectives

Predict the eigenvalues and mode shapes of an isotropic pressurised torus.

Particular issues

Modelisation of thin shells.


Input

Geometry, boundary conditions and loading

A cylindrical torus.

The torus is in free-free conditions.

An internal pressure is applied to the torus.

and Material properties

The torus is made of a polyimide film.

Output

eigenvalues and mode shapes of the torus.

References

Analysis

- Dynamic Characterization of an inflatable Concentrator for Solar Thermal Propulsion (L Leigh, H, Hamidzadeh, M Tinker, K Slade, AIAA-2001-1406)
- 2) Vibration Analysis and Control of an Inflatable Toroidal Satellite Component using Piezoelectric Actuators and Sensors (A Jha, PhD dissertation)

Testing

- Dynamic Characterization of an inflatable Concentrator for Solar Thermal Propulsion (L Leigh, H, Hamidzadeh, M Tinker, K Slade, AIAA-2001-1406)
- 2) Experimental Modal Analysis and Damping Estimation for an Inflated Thin-Film Torus (D Griffith, J. Main, Journal of Guidance, Control, and Dynamics, Vol. 25, No 4)

Geometry							7-1a
Stowed Structure				Deployed Structure: torus			
Width]	m		Cross-sectio	n diameter	m	0.152
Total Length	1	m		Outside over	all diameter	m	1.83
Thickness	1	m		Thickness		m	5.08x10 ⁻⁵
Volume	ľ	n^3		Volume		m^3	?
Sketch				Sketch			
Properties							
Material: Kapton 300-JF	•			Gas: air			
Туре		-	PI	Density		kg m ⁻³	
Density	kg	m^{-3}	1500	ср		J kg ⁻¹ K ⁻¹	
Yield Stress	I	Pa		Rgas		J kg ⁻¹ K ⁻¹	
Maximum Strain		-		Temperature		K	
Young Modulus	Pa	(10^6)	2760	Remarks			
Poisson's Ratio		-	0.30				
Loads and Boundary Con	nditi	ons					
Loads				Boundary C	Conditions		
Pressure of Inflated Struct	ure	Pa	3447	Geometric	al Entity	Constra	ints
				free-	free		
Remarks							
		Remarks					
Environment							
Environmental Pressure						0	
Gravity			m	s^2 0			
Temperature]	293			

Geometry							7-1b	
Stowed Structure				Deployed Structure: torus				
Width	m		Cross-section	n diameter	m	2.44		
Total Length	1	m		Main diame	ter	m	15.24	
Thickness	1	m		Thickness		m	7.62x10 ⁻⁵	
Volume	r	n^3		Volume		m ³	?	
Sketch				Sketch				
Properties								
Material: Kapton				Gas: air				
Туре		-	PI	Density	ensity			
Density	kg	m^{-3}	1418	ср		J kg ⁻¹ K ⁻¹		
Yield Stress	I	Pa		Rgas		J kg ⁻¹ K ⁻¹		
Maximum Strain		-		Temperature	Temperature			
Young Modulus	Pa	(10^6)	2550	Remarks				
Poisson's Ratio		-	0.34					
Loads and Boundary Con	nditi	ons						
Loads				Boundary (Conditions			
Pressure of Inflated Structu	ıre	Pa	3447	Geometric	al Entity	Constra	ints	
				free-	free			
Remarks								
		Remarks						
Environment								
Environmental Pressure	_			Pa		0		
Gravity			m	s ⁻²		0	0	
Temperature]	K		293	293	

Geometry							7-1c	
Stowed Structure				Deployed Structure: torus				
Width	1	m		Cross-sectio	n diameter	m	0.15	
Total Length	ī	n		Main diame	ter	m	1.98	
Thickness	1	n		Thickne ss		m	4.6x10 ⁻⁵	
Volume	n	n^3		Volume		m ³	?	
Sketch		Sketch						
Properties								
Material: Kapton-HN				Gas: air				
Туре		-	PI	Density		kg m ⁻³		
Density	kg	m ⁻³	1420	ср	ср			
Yield Stress	F	a		Rgas	Rgas			
Maximum Strain		-		Temperature	e	K		
Young Modulus	Pa (10^{6})	2500	Remarks				
Poisson's Ratio		-	0.34					
Loads and Boundary Con	nditio	ons						
Loads				Boundary (Conditions			
Pressure of Inflated Structu	ıre	Pa	5520	Geometric	cal Entity	Constra	ints	
				free-	free			
sheets. Joining region 5.1x10 ⁻² m wi	Remarks: Torus panels thermally formed from flat sheets. Joining region 5.1×10^{-2} m wide and 3.6×10^{-4} to 1.5×10^{-4} m thick (from inner to outer).							
Environment								
Environmental Pressure	onmental Pressure			Pa 0				
Gravity		Ĺ	m	s^{-2}	0			
Temperature]	K	293			

Wrinkling of an isotropic rectangular membrane subjected to edge shear loading										
Objectives	<u> </u>	<u> </u>								
Predict the wrinkling pattern and the wrinkle edge shear loading.	es amplitude of a thin membrane su	ubjected to								
Particular issues										
Modelisation of thin membranes.										
Input										
Geometry, boundary conditions and	Material properties									
A rectangular plane membrane. One of the long edge is fixed (blocked translations and rotations). A shear load is applied on the other long edge.	The membrane is made of polying	nide film.								
γ										
Output Wrinkling pattern (angle and wavelength) Wrinkling amplitude A										
References										
Analysis 1) Computation of wrinkles amplitudes in thin membranes (YW Wong, S Pellegrino, AIAA-2002-1369)	Testing 1) Computation of wrinkles amount thin membranes (YW V Pellegrino, AIAA-2002-1369)	Wong, S								

Geometry							8-1a
Stowed Structure				Deployed Structure: membrane			
Width		m		Height		m	0.128
Total Length		m		Length		m	0.380
Thickness		m		Thickness		m	2.5x10 ⁻⁵
Volume	1	n^3		Volume		m ³	?
Sketch				Sketch			
Properties							
Material: Kapton				Gas:			
Type		-	PI	Density		kg m ⁻³	
Density	kg	m^{-3}	1500	ср		J kg ⁻¹ K ⁻¹	
Yield Stress]	Pa		Rgas		J kg ⁻¹ K ⁻¹	
Maximum Strain		-		Temperature		K	
Young Modulus	Pa	(10^6)	3530	Remarks			
Poisson's Ratio		-	0.30				
Loads and Boundary Con	nditi	ons					
Loads				Boundary (Conditions		
Prescribed displacement		mm	3	Geometric	cal Entity	Constra	ints
				long o	edge	clamp	ed
Remarks:							
		Remarks					
Environment							
Environmental Pressure	I			Pa		10 ⁵	
Gravity	m			s^{-2} 9.81		9.81	
Temperature]	K 293			

Wrinkling of an isotropic rectangular membrane subjected to point shear loading

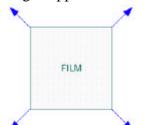
8-2

Objectives

Predict the wrinkling pattern and the wrinkles amplitude of a thin membrane subjected to point shear loading.

Particular issues

Modelisation of thin membranes.


Input

Geometry, boundary conditions and loading

A square plane membrane.

The membrane is fixed at the corners.

A point loading is applied to 1 to 4 corners.

Material properties

The membrane is made of polyimide film.

Output

Wrinkling pattern (angle and wavelength)

Wrinkling amplitude A

References

Analysis

- 1) Prediction of wrinkle amplitudes in square solar sail (YW Wong, S Pellegrino, AIAA-2003-1982)
- 2) A two variables parameter membrane model for wrinkling analysis of membrane structures (H Ding, B Yang, M Lou, H Fang, AIAA-2002-1460)

Testing

- 1) Prediction of wrinkle amplitudes in square solar sail (YW Wong, S Pellegrino, AIAA-2003-1982)
- 2) Comparing photogrammetry with a conventional displacement measurement technique on a 0.5m square Kapton membrane (UK Dharamsi, JR Blandino, AIAA-2002-1258)

Geometry							8-2a
Stowed Structure				Deployed Structure: membrane			
Width	1	m		Height		m	0.5
Total Length	1	m		Length		m	0.5
Thickness	1	m		Thickness		m	2.5x10 ⁻⁵
Volume	r	n^3		Volume		m ³	?
Sketch		Sketch T_1, δ_1 L T_2, δ_2 25mm chamfer reinforced with 25mm x 20mm Kapton of 0.1mm thickness T_2, δ_2 T_1, δ_1					
Properties							
Material: Kapton				Gas:			
Type		-	PI	Density		kg m ⁻³	
Density	kg	m^{-3}	1500	ср		J kg ⁻¹ K ⁻¹	
Yield Stress	I	Pa		Rgas		J kg ⁻¹ K ⁻¹	
Maximum Strain		-		Temperature	e	K	
Young Modulus	Pa	(10^6)	3530	Remarks			
Poisson's Ratio		-	0.30				
Loads and Boundary Con	nditi	ons					
Loads				Boundary (Conditions		
loading at four corners		N	5	Geometric	cal Entity	Constra	ints
				isost	atic		
Remarks: 25mm chamfer re 25mm x 20mm Kapton of 0.		Remarks					
Environment							
Environmental Pressure			I	Pa 0			
Gravity	Gravity m			$1 s^{-2}$ 0			
Temperature				K	293		

Geometry							8-2b
Stowed Structure				Deployed Structure: membrane			
Width		m		Height		m	0.5
Total Length		m		Length		m	0.5
Thickness		m		Thickness		m	2.5x10 ⁻⁵
Volume	1	n^3		Volume		m ³	?
Sketch		Sketch		T ₁ , δ ₁	T ₂ .δ ₂		
Properties						5774 7Chil	200000
Material: Kapton				Gas:			
Type		-	PI	Density		kg m ⁻³	
Density	kg	m^{-3}	1500	ср		J kg ⁻¹ K ⁻¹	
Yield Stress]	Pa		Rgas	Rgas		
Maximum Strain		-		Temperature	e	K	
Young Modulus	Pa	(10^6)	3530	Remarks			
Poisson's Ratio		-	0.30	1			
Loads and Boundary Co.	nditi	ons					
Loads				Boundary (Conditions		
loading at two corners T1		N	20	Geometric	cal Entity	Constra	ints
loading at two corners T2		N	5	isosta	atic		
Remarks: 25mm chamfer re 25mm x 20mm Kapton of 0.		Remarks					
Environment							
Environmental Pressure F			Pa 0				
Gravity	ty m			0			
Temperature]	K	293		

Geometry							8-2c	
Stowed Structure				Deployed Structure: membrane				
Width		m		Height		m	0.8	
Total Length		m		Length		m	0.8	
Thickness		m		Thickness		m	7.62x10 ⁵	
Volume	1	n^3		Volume		m ³	?	
Sketch		Sketch		X I	P ₁			
Properties								
Material: Kapton				Gas:				
Type		-	PI	Density		kg m ⁻³		
Density	kg	m ⁻³	1500	ср		J kg ⁻¹ K ⁻¹		
Yield Stress]	Pa		Rgas		J kg ⁻¹ K ⁻¹		
Maximum Strain		-		Temperature		K		
Young Modulus	Pa	(10^6)	3530	Remarks				
Poisson's Ratio		-	0.30					
Loads and Boundary Con	diti	ons						
Loads				Boundary (Conditions			
right corner		N	13.3	Geometric	cal Entity	Constra	ints	
upper and lower corners		N	17.8	left co	orner	fixed	d	
Remarks: corners of the square are thick aluminium (E=69000 MPa, v=0.3, both sides. Dimensions of each plate are 55mm) plates on	Remarks						
Environment		1						
Environmental Pressure				Pa 0				
Gravity			m	0				
			K	293				

Geometry							8-2d	
Stowed Structure				Deployed Structure: membrane				
Width	1	m		Height		m	0.5	
Total Length	1	m		Length		m	0.5	
Thickness	1	m		Thickness		m	2.5x10 ⁻⁶	
Volume	n	n^3		Volume		m ³	?	
Sketch		Sketch Sketch Sketch Side Incl. Side Incl.						
Properties								
Material: Kapton				Gas: air				
Туре		-	PI	Density		kg m ⁻³		
Density	kg	m^{-3}	1500	ср		J kg ⁻¹ K ⁻¹		
Yield Stress	F	Pa		Rgas		J kg ⁻¹ K ⁻¹		
Maximum Strain		-		Temperature		K		
Young Modulus	Pa	(10^6)	3530	Remarks				
Poisson's Ratio		-	0.30					
Loads and Boundary Co	onditi	ons						
Loads				Boundary (Conditions			
lower and right corner		N	2.45	Geometric	cal Entity	Constra	ints	
				upper and le	eft corners	fixed	l	
Remarks: 10 ⁻³ mm vapor of aluminium coating.		Remarks						
Environment								
Environmental Pressure			I	Pa 10 ⁵				
Gravity			m	9.81				
Temperature]	K	293			