Proceedings of the

31st European Space Thermal Analysis Workshop

ESA/ESTEC, Noordwijk, The Netherlands

24-25 October 2017

courtesy: Katherine Ostojic, RAL Space

European Space Agency Agence spatiale européenne

Abstract

This document contains the presentations of the 31st European Space Thermal Analysis Workshop held at ESA/ESTEC, Noordwijk, The Netherlands on 24–25 October 2017. The final schedule for the Workshop can be found after the table of contents. The list of participants appears as the final appendix. The other appendices consist of copies of the viewgraphs used in each presentation and any related documents.

Proceedings of previous workshops can be found at http://www.esa.int/TEC/Thermal_control under 'Workshops'.

Copyright © 2017 European Space Agency - ISSN 1022-6656

 $[\]Rightarrow$ Please note that text like this are clickable hyperlinks in the document.

 $[\]Rightarrow$ This document contains video material. By (double) clicking on picture of a video the movie file is copied to disk and then played with an external viewer. This has been tested with Adobe Reader 9 in Windows and Linux using vlc as external viewer. Other pdf readers may not work automatically. As a last resort the user can manually extract the movie attachment from the file and play it separately.

Contents

Title page	1
Abstract	2
Contents	3
Programme	6

Appendices

A	Welcome and introduction	9
B	A proposition for updating the environmental standards using real Earth Albedo and Earth IR Flux for Spacecraft Thermal Analysis	19
С	JUICE Thermal Analysis Challenges	33
D	Thermal Modelling of Luna 27 Landing Site	47
Е	Construction of a reduced thermal model of a Traveling Wave Tube with a modal method	57
F	Baseplate Pyramid Modelling of the Calibration Target for the MetOp-SG Microwave Sounder Instrument (MWS)	69
G	Enhancement of Loop Heat Pipe module for thermal analysis	79
H	Improved Integrated Way of Post-processing Thermal Model Data	95
Ι	Thermal Analysis of Electrochromic Radiators on Sentinel 2	101
J	Thermal analysis approach for finding Bepi Colombo MTM SA wing generated PV power	113
K	Time-Varying Thermal Dynamics Modeling of the Prototype of the REMS Wind Sensor	127
L	A MLI model based on transient model correlation	137
Μ	Methods to Improve Thermal Test Efficiency (MITTE)	153
N	Thermal Modelling of EarthCARE Instruments' Electronics Boxes	167
0	Quality assessment for parameters obtained with model correlation	177
Р	FiPS® — Thermal Fluid-Structure Interaction	189
Q	Multi-dimensional Ablation and Thermal Response Program for atmospheric entries	201
R	ESATAN Thermal Modelling Suite — Product Developments	211
S	Data exchange for thermal analysis — a status update	231
Т	SYSTEMA - THERMICA	237

U	Model correlation of Meteosat Third Generation Platform STM	
V	Development of a Modularized and Scalable Thermal Model for Small Satellites	265
W	DySCo — improvement of thermal vacuum test monitoring and exploitation in real time	277
X	List of Participants	291

15:40 Coffee break in the Foyer

9:00	Registration
9:45	Welcome and introduction Harrie Rooijackers (ESA/ESTEC, The Netherlands)
10:00	A proposition for updating the environmental standards using real Earth Albedo and Earth IR Flux for Spacecraft Thermal Analysis Romain Peyrou-Lauga (ESA/ESTEC, The Netherlands)
10:30	JUICE Thermal Analysis Challenges Alejo Ares (Airbus Toulouse, France)
10:55	Thermal Modelling of Luna 27 Landing Site Hannah Rana & Vito Laneve & Philipp Hager & Thierry Tirolien (ESA/ESTEC, The Netherlands)
11:20	Coffee break in the Foyer
11:45	Construction of a reduced thermal model of a Traveling Wave Tube with a modal method
	Martin Raynaud (Thales Alenia Space, France) Quentin Malartic & Frederic Joly & Alain Neveu (Universite Evry Val Essone, France)
12:10	Baseplate Pyramid Modelling of the Calibration Target for the MetOp-SG Microwave Sounder Instrument (MWS) Katherine Ostoiic (RAL Space United Kingdom)
12:35	Enhancement of Loop Heat Pipe module for thermal analysis Ludovic Zurawski (Airbus Toulouse, France) Patrick Hugonnot & Paul Atinsounon (Thales-Alenia Space, France) James Etchells (ESA/ESTEC, The Netherlands)
13:00	Lunch in the ESTEC Restaurant
14:00	Improved Integrated Way of Post-processing Thermal Model Data Nicolas Bures (ITP Engines UK, United Kingdom)
14:25	Thermal Analysis of Electrochromic Radiators on Sentinel 2 Oliver Kluge & Alexander Zwiebler & Dr. Tino Schmiel & Prof. Dr. Martin Tajmar (Dresden University of Technology, Germany) Martin Altenburg (Airbus Defence and Space, Germany)
14:50	Thermal analysis approach for finding Bepi Colombo MTM SA wing generated PV
	Niels van der Pas (Airbus Defence and Space, The Netherlands)
15:15	Time-Varying Thermal Dynamics Modeling of the Prototype of the REMS Wind Sensor
	Maria-Teresa Atienza & Lukasz Kowalski & Sergi Gorreta & Vicente Jiménez & Manuel Domínguez-Pumar (Universitat Politecnica d'Catalunya, Spain)

Programme Day 1

6

16:15 A MLI model based on transient model correlation

Jan Klement & Lena Bötsch & Jonas Klose & Christian Walker (Tesat-Spacecom GmbH, Germany)

16:40 Methods to Improve Thermal Test Efficiency (MITTE)

Patrick Coutal (Airbus Toulouse, France) James Etchells (ESA/ESTEC, The Netherlands)

17:05 Thermal Modelling of EarthCARE Instruments' Electronics Boxes

Allan Dowell (Thales Alenia Space, United Kingdom)

- 17:30 Social Gathering in the Foyer
- 19:30 Dinner in Blu Beach

Programme Day 2

9:00 Quality assessment for parameters obtained with model correlation

Jan Klement (Tesat-Spacecom GmbH, Germany)

9:25 **FiPS**[®] — Thermal Fluid-Structure Interaction

Patricia Netzlaf (Ariane Group, Germany)

- 9:50 Multi-dimensional Ablation and Thermal Response Program for atmospheric entries Viola Renato (University of Strathclyde, Scotland UK)
- 10:15 ESATAN Thermal Modelling Suite Product Developments Chris Kirtley (ITP Engines UK, United Kingdom)
- 10:40 **Data exchange for thermal analysis** a status update James Etchells & Duncan Gibson & Harrie Rooijackers & Matthew Vaughan (ESA/ESTEC, The Netherlands)
- 10:50 Coffee break in the Foyer
- 11:20 SYSTEMA THERMICA Antoine Caugant & Rose Nerriere & Tomothée Soriano (Airbus Defence and Space SAS, Toulouse, France)
- 11:45 Model correlation of Meteosat Third Generation Platform STM

Emmanuelle Fluck (OHB System AG, Germany)

- 12:10 Development of a Modularized and Scalable Thermal Model for Small Satellites Alexander Zwiebler & Oliver Kluge & Claudius Birkefeld & Dr. Tino Schmiel & Prof. Dr. Martin Tajmar (Dresden University of Technology, Germany)
- 12:35 **DySCo** improvement of thermal vacuum test monitoring and exploitation in real time Guillaume Pelissier (Airbus Toulouse, France)
- 13:00 Closure
- 13:10 Lunch in the ESTEC Restaurant

Appendix A

Welcome and introduction

Harrie Rooijackers (ESA/ESTEC, The Netherlands)

esa Workshop objectives To promote the exchange of views and experiences amongst the users of • European thermal engineering analysis tools and related methodologies To provide a forum for contact between end users and software developers • • To present developments on thermal engineering analysis tools and to solicit feedback To present new methodologies, standardisation activities, etc. • ESA UNCLASSIFIED - For Official Use Harrie Rooijackers | 2017-10-24 | Slide 2 1+1 European Space Agency

Programme	esa
• 1.5 day programme	
Presentations of 25 min, including 5 minutes for questions and discuss	sions
 Presenters: If not done already please leave your presentation (PowerPoint or Imp PDF file) with Harrie before the end of Workshop. 	press and
No copyrights, please!	
 Workshop Proceedings will be supplied to participants afterwards, on t 	he Web.
ESA UNCLASSIFIED - For Official Use Harrie Rooijackers	; 2017-10-24 Slide 3
	European Space Agency
Practical information	esa
Practical informationLunch: 13:00 - 14:00	esa
 Practical information Lunch: 13:00 - 14:00 Cocktail today around 17:30 in the Foyer 	esa
 Practical information Lunch: 13:00 - 14:00 Cocktail today around 17:30 in the Foyer Check your details on the list of participants and inform the Conference Bur modifications. Leave your email address! 	reau of any
 Practical information Lunch: 13:00 - 14:00 Cocktail today around 17:30 in the Foyer Check your details on the list of participants and inform the Conference Bur modifications. Leave your email address! Taxi service and Shuttle service to Schiphol Airport and hotels in Noordwijk contact ESTEC Reception a ext. 54000, <u>ESTEC.Reception@esa.int</u> or Taxi Brouwer a +31(0)71 361 1000, info@brouwers-tours.nl 	reau of any
 Practical information Lunch: 13:00 - 14:00 Cocktail today around 17:30 in the Foyer Check your details on the list of participants and inform the Conference Bur modifications. Leave your email address! Taxi service and Shuttle service to Schiphol Airport and hotels in Noordwijk contact ESTEC Reception a ext. 54000, <u>ESTEC.Reception@esa.int</u> or Taxi Brouwer a +31(0)71 361 1000, info@brouwers-tours.nl Optional workshop dinner tonight! 	reau of any

European Space Agency

📥 !

13

ESA UNCLASSIFIED - For Official Use Harrie Rooijackers | 2017-10-24 | Slide 10

Other events	esa
Space Engineering and Technology Final Presentation Days 21-22 November 2017, ESA/ESTEC	
Extract of the programme for 21 Nov:	
Assessment of materials and processes design margins for spacecraft and launchers	Shumit Das (TEC-QEE)
Breadboard development for in-orbit demonstration of additive layer manufacturing technologies	Ugo Lafont (TEC-QEE)
2-stage cooler for detector cooling between 30K and 50K	Thierry Tirolien (TEC-MTT)
Passive by-pass valve for single and two phase mechanical pumped fluid loops	Stephane Lapensee (TEC-MTT)
Deployable & Inflatable Heatshield & Hypersonic Decelerator Concepts - Phase 1	Heiko Ritter (TEC-MTT)
Development of a rigid conformal ablator for extreme heat flux applications	Heiko Ritter (TEC-MTT)
``ReGS``: A resistive grid TPS recession sensor	Heiko Ritter (TEC-MTT)
Calibration in a traceable manner of a radiometer (Kendall type) used for 10 solar constants and above	Alessandro Cozzani (TEC-MXE)
ESA UNCLASSIFIED - For Official Use	Harrie Rooijackers 2017-10-24 Slide 11
_ II ⊾ := = + II = ≦ _ II II = := @ II _ := @ X I	European Space Agency

United Space in Europe

Appendix B

A proposition for updating the environmental standards using real Earth Albedo and Earth IR Flux for Spacecraft Thermal Analysis

Romain Peyrou-Lauga (ESA/ESTEC, The Netherlands)

Abstract

This presentation aims at recreating a link between real Earth Albedo and Earth IR Flux measurement (by CERES instruments) and Earth environment assumptions used for Earth orbiting spacecraft thermal analysis. It will compare the common Earth albedo and Earth Infrared flux hypotheses (coming from the standards, and past or current projects) with the real measured Earth radiated energy. From such comparison, one can assess if the current hypotheses cover properly the reality or how to quantify the margin potentially contained in these usual assumptions. As an ultimate goal, this presentation will open the discussion whether the usual hypotheses need to be updated.

Introduction

A	The reasons of such an approach - <i>curiosity</i>	 what is the link between albedo/Earth temperature assumptions and the reality (clouds, continents, oceans) ? 	
	projects thermal analysis, s	tandards @ who's right ? Who's wrong ?	In Max Inth T Earth T
	(ECSS, NASA), handbooks	S 02 0.4 2	45 K 265 K
	- track of their origin difficult	to find <i>Constitution</i> Tis there hidden margin ?	44 K 260 K
	 recent Earth observations h been providing invaluable data 	ave rewith an increased accuracy 0.14 0.36 2	44 K 265 K
	about Earth radiated energy	Earth surface coverage	40 K 261 K
	measured from Space	0.2 0.4 24	40 K 260 K
4	NASA's CERES (Clouds and Earth Radi - Terra (1999)	iant Energy System) experiment	18 K 262 K
	- Aqua (2002) - Suomi NPP (2011) @ H -	low do standards correlate with real values?	
	\$ D	to standards need to be updated ?	2/23
= 1	■ ► = = + = = = = = = = = =	📲 🕳 🔯 💵 🚍 🚼 🕶 💥 🚘 🚺 European Spac	e Agency

- Effective albedo = perceived albedo from Earth orbit
- > Effective Earth IR flux = perceived Earth IR flux from Earth orbit
- > But first, what's the Earth field of view from orbit ?

25

Average effective albedo / Earth temperature over shorter period than an orbit

eesa

Equatorial

Proposing standard update for albedo and IR Earth temperature

800 km

6°

Future activities: developing the tool with a more statistical approach covering a larger range of orbits

drifting

0.15 - 0.31

🛏 I+I

253 K – 260 K

European Space Agency

Appendix C

JUICE Thermal Analysis Challenges

Alejo Ares (Airbus Toulouse, France)

Abstract

JUICE - JUpiter ICy moons Explorer - is the first large-class mission in ESA's Cosmic Vision 2015- 2025 programme. The spacecraft will explore the Jovian system focusing on Jupiter and three of its Galilean moons: Ganymede, Callisto, and Europa. Detailed investigations will be conducted on Ganymede, as a planetary body potentially able to support life. The mission also plans fly-bys of Europa and Callisto to complete a comparative study of Galilean moons. A total of ten state-of-the-art instruments will be carried on the spacecraft to address all mission objectives.

The system-level thermal analysis of the whole spacecraft is being carried out by Airbus Defence and Space, the mission prime contractor. Several challenges are faced, including:

- The accurate modelling of the S/C trajectory and thermal environment during planetary and Jovian Moon fly-bys.
- The modelling of a critical and complex MLI blanket geometry, which will be validated through a dedicated and specific Thermal Development Model (TDM) test.
- The management of dissipation timelines for the equipment and instruments.
- The integration of instruments and units thermal models from new actors in European space thermal engineering, and coupled instrument analyses supporting trade-off studies.

This presentation will describe these challenges and the methods and tools used to deal with them.

MAGOB

2/21

· eesa AIRBUS

uice

Mission

Spacecraft

MLI

Scenarios

Models

Conclusion

JUICE – The mission (1/3)

- JUpiter ICy moons Explorer
- First large-class mission in ESA's Cosmic Vision 2015-2025
- "The objective of the JUICE mission is the investigation of Jupiter and its icy moons, Callisto, Ganymede and Europa. It addresses the question of whether possible habitats of life are provided underneath the surfaces of the icy satellites as well as Jupiter's atmosphere & magnetosphere"

- 10 state-of-the art instruments carried + 1 ground-based experiment
- Tour of Jovian system: Jovian tour with flybys (Europa, Callisto) + orbital observation of Ganymede

3/21

- Preliminary Design Review successful (March 2017)
- Launch date: 20th May 2022

Save the attachment to disk or (double) click on the picture to run the movie.

11/21

·eesa AIRBL

uice

Mission

≤Ľ

Scenarios

Models

31st European Space Thermal Analysis Workshop

24–25	Octobe

·eesa AIRB

19/21

- 2. Test MLIs in Thermal Development Model test
- 3. Spacecraft Thermal Vacuum Tests + model correlation + FAR...
- ...a lot of exciting challenges still to come

Challenge #3: issues with unit models(3/3)

- Model exchange a time-consuming activity:
- Roughly 20% of total working time spent reviewing unit models
- First issue: model compatibility
 - Use of common formats for exchange (Step-TAS for Geometric Models and ESATAN for Mathematical Models)

Save the attachment to disk or (double) click on the picture to run the movie.

Save the attachment to disk or (double) click on the picture to run the movie.

Appendix D

Thermal Modelling of Luna 27 Landing Site

Hannah Rana

Vito Laneve Philipp Hager (ESA/ESTEC, The Netherlands) Thierry Tirolien

Abstract

Luna 27, also known as the Lunar Resource Lander, is the Russian-ESA collaborative mission to the permanently shadowed craters at the south pole of the moon. In this study, the thermal environment of the potential landing site of the lander is assessed with the use of ESATAN-TMS. A series of modelling approaches are explored in order to address the different factors that may impact the thermal environment affecting the lander, namely surface infrared, direct impingent solar flux, the transient cases of sunrise and sunset, and the lunar topography. The effect of the orientation of the lander was further considered with regards to the on-board European units PILOT and PROSPECT. The models were then assessed in light of theoretical flux balances, empirical lunar regolith temperature correlations, and data from NASA's Lunar Reconnaissance Orbiter.

Background

ESA UNCLASSIFIED - For Official Use

- Luna-27: ESA-Russia collaboration
- Scheduled for flight in 2025
- Landing site: 82.7° S, 33.5° E
- European technology on-board:
 - <u>PILOT</u> (Precise Intelligent Landing using On board Technology)
 - <u>PROSPECT</u> (Platform for Resource Observation and in-Situ Prospecting in support of Exploration, Commercial Exploitation & Transportation).
- Searching for volatiles (CHON compounds)
 - → access to lunar subsurface & sample capability testing

• \rightarrow ensure stringent 120-150K constraint for sample preservation

|+|

European Space Agency

Illuminated: $T_{moon} = ((1-a). Cs. \cos(\lambda)/(\epsilon.\sigma) + (2.3+3.1*\cos(lat)^{1/4})/(\epsilon.\sigma))^{(1/4)}$ Non illuminated: $T_{moon} = ((2.3+3.1*\cos(lat)^{1/4})/(\epsilon.\sigma))^{(1/4)}$

ESA UNCLASSIFIED - For Official Use Hannah Rana, Vito Laneve, Philipp Hager, Thierry Tirolien | 24/10/2017 | Slide 4 **|+**| European Space Agency

Lunar Topography

- Several mountains in region; might radiate heat to lander
- Lunar surface close to black body
- 90° incident angle of sun; surface heating to 300-400K (right)
- Southern pole slopes

ESA UNCLASSIFIED - For Official Use

- Mountains 20-100km may be significant
- Concerned with temperature development of samples being drilled

- I+I

!! ▶ :: ■ + !! ■ ≦ = !! !! = = :: • !! = !! = !! .

European Space Agency

- nodes with view factor to cube node
- Small dimensions of cube vs scale of topography

Appendix E

Construction of a reduced thermal model of a Traveling Wave Tube with a modal method

Martin Raynaud (Thales Alenia Space, France)

Quentin Malartic Frederic Joly Alain Neveu (Universite Evry Val Essone, France)

Abstract

This work presents the principle of the construction of a reduced thermal model using a modal method based on branches combination. The method is applied to a Traveling Wave Tube and shows that it is possible to obtain accurate enough results by using only 10 degrees of freedom instead of several hundred thousands degrees of freedom as required by Finite Elements or Finite Volume methods. The robustness, i.e., sensitivity to boundary conditions and heat sources, of the method is also studied.

60

Appendix F

Baseplate Pyramid Modelling of the Calibration Target for the MetOp-SG Microwave Sounder Instrument (MWS)

Katherine Ostojic (RAL Space, United Kingdom)

Abstract

The Microwave Sounder instruments (MWS) are being built with Airbus Defence and Space (UK) as prime contractor. MWS, flying on the MetOp Second Generation A spacecraft, will make measurements from 23 to 229 GHz for operational meteorology. MWS will be calibrated pre-launch in a thermal vacuum using blackbody targets developed at STFC RAL Space, in Oxfordshire, UK. The variable temperature target, representing the Earth view of MWS, uses a liquid nitrogen / helium gas gap system to control the target temperature to between 80 K and 315 K. The baseplate of the 500 mm diameter target is required to be as isothermal as possible and, in order to approximate a blackbody, the aluminium target surface is machined to contain 2500 square pyramids, each 9 mm wide at base and 40 mm high. These are conformally covered by circa 1.5 mm of low thermal conductivity absorber. These pyramids have proven to be challenging to model using a finite difference method in ESATAN-TMS. A modelling method has been developed which uses the radiative aspects of ESATAN-TMS to determine the heat load on the surfaces of these pyramids, better determine the temperature distribution through each pyramid for the calculation of physical and brightness temperatures. This talk will examine the lessons learned during the modelling process and the rationale behind the selection of the final analytical method.

MetOp-SG spacecraft http://www.esa.int/spaceinimages/Images/2012/11/ MetOp_Second_Generation

MWS instrument http://alma-sistemi.com/?p=145

Appendix G

Enhancement of Loop Heat Pipe module for thermal analysis

Ludovic Zurawski (Airbus Toulouse, France)

Patrick Hugonnot Paul Atinsounon (Thales-Alenia Space, France)

James Etchells (ESA/ESTEC, The Netherlands)

Abstract

This presentation reports on the Loop Heat Pipe (LHP) module enhancement aiming to provide to the European space community a software to model Loop Heat Pipes for system level thermal analyses in the scope of a collaboration between ESA & CNES Agencies, Airbus Defence and Space and Thales-Alenia Space.

LHPs are indeed more and more used in space for current & future applications, due to their performances (in terms of weight, design flexibility, thermal transport capacity and accommodation flexibility).

The previous LHP module version, developed in the frame of a R&T CNES activity is fully operational and has been used on a number of programs. However, it only addresses a limited number of LHP architectures and analytical scenarios. The objective of the "Enhancement of LHP Modelling tool" program is then to further develop the module to support the new identified needs consisting of complex architectures (e.g. regulation valves & multiple condensers) and also physical scenarios. In addition, from experience gained on the software by several users, the need of improving the module in terms of robustness, performance & ease of use is clearly identified.

The main topics to be addressed during the Workshop are presented hereafter:

- Program organization
- LHP Module overview (purposes, theoretical bases, ...)
- General improvements (solvers compatibility, man-machine interface, ...)
- Complex architectures modelling capabilities (recursive approach for multi-branches architecture)
- New functionalities implementation (regulating valve, capillary blocker) with validation test cases
- Black boxes (Thermisol, Esatan and e-Therm) presentation
- Way forward
 - gravity effect
 - transient phenomena (start-up, ...)

- Validation cases (TAS/ADS)
- Black boxes versions (ADS)
- Way forward (ADS)
- · Conclusion (ESA)

23 October, 2017 Enhancement of LHP Modelling Tool

AIRBUS

Cesa cres ThalesAlenia

Software finalisation and Black box

esa

83

WP 2600

General improvement

Enhancement of LHP Modelling Tool

23 October, 2017

6

Airbus DS

TAS responsibility

AIRBUS

cnes ThalesAlenia

23 October, 2017 Enhancement of LHP Modelling Tool

Save the attachment to disk or (double) click on the picture to run the movie.

plexe architecture		
components		
r interface/use simplification		
patibility with industrial needs		
k Boxes		
vity effect		
isient phenomena		Out of the scope of current program
	r interface/use simplification apatibility with industrial needs k Boxes vity effect sient phenomena	r interface/use simplification apatibility with industrial needs k Boxes vity effect sient phenomena

Appendix H

Improved Integrated Way of Post-processing Thermal Model Data

Nicolas Bures (ITP Engines UK, United Kingdom)

Abstract

Post-processing of the thermal results is a significant part of the overall thermal modelling process. Clear presentation of results not only helps towards the understanding of the thermal behaviour of the model, but also helps towards model validation. This presentation focuses on how ESATAN-TMS 2018 further helps the thermal engineer to work efficiently, eliminating repetitiveness by making the process fully automatic and integrated within a single interface.

- Summary of the CubeSat provided by Melbourne University
 - Provided as a .stp file, converted using CADbench
- Presentation of the requirements
 - Temperature of different components will be plotted using charts for multiple cases
 - Cases will be compared to evaluate the temperature change and temperature evolution using a Delta Chart
 - Temperature requirements will be verified using a Limits Chart
- Demo
 - A typical post-processing example will be presented using the new version of ESATAN-TMS

ATAN**-TMS**

Thermal Requirements

- Temperature requirements
 - Units 1 to 5 located on different electronic cards in the model are constrained by temperature requirements provided by the supplier
 - The battery temperature must strictly be between 35 and 50 degrees for both the hot and cold case
- Heat exchange requirements
 - The radiative heat exchange between Solar_Cell_10 and the Solar_Panel_6 structure must be negligible (less than 1W)
- The model shall be exported and provided as a text file to the customer

Appendix I

Thermal Analysis of Electrochromic Radiators on Sentinel 2

Oliver Kluge Alexander Zwiebler Dr. Tino Schmiel Prof. Dr. Martin Tajmar (Dresden University of Technology, Germany)

> Martin Altenburg (Airbus Defence and Space, Germany)

Abstract

The potential of electrochromic thin film radiators with variable optical properties is more and more evaluated by spacecraft developers. The design of the Thermal Control System is driven by constraints that can appear in the form of a limited power budget, high thermal gradients, different thermal loads or a limited mass budget.

Electrochromic radiators with variable optical properties can repeal such a limitation by adjusting both emissivity (ε) and solar absorptivity (α). This capability may ease the design of a Thermal Control System itself, the design of the satellite and the Mission/Operation. Consequently such a radiator should have monetary advantages. This presentation contains the thermal and electrical analysis of the earth observation satellite Sentinel 2 equipped with a theoretical electrochromic radiator which is currently developed by TU-Dresden in cooperation within an industrial (Airbus Defence and Space GmbH) co-founded Graduate School. These electrochromic radiators are based on electrochemical cells and the intercalation of Li-Ions into transition-metal oxides.

The first results of our simulations show, that power savings (e.g. for payload heating) up to 100% are possible. A value of $\Delta \varepsilon >=0,4$ seems to be the threshold for using electrochromic surfaces efficiently in thermal engineering of spacecrafts. They also make clear that the control speed of radiators α/ε is not highly relevant for thermal design due to the high thermal masses in the spacecraft.

These advantages are limited caused by still necessary redundant systems to ensure the survival of the payloads and the electrical power for the electrochromic radiator itself. These results encourage to more detailed investigations on a thermal control system using electrochromic radiators. The results of the Sentinel 2 thermal analysis will be presented and the restrictions will be discussed.

The potential of electrochromic thin film radiators with variable optical properties is more and more evaluated by spacecraft developers. The design of the Thermal Control System is driven by constraints that can appear in the form of a limited power budget, high thermal gradients, different thermal loads or a limited mass budget.

Electrochromic radiators with variable optical properties can repeal such a limitation by adjusting both emissivity (ϵ) and solar absorptivity (α). This capability may ease the design of a Thermal Control System itself, the design of the satellite and the Mission/Operation. Consequently such a radiator should have monetary advantages. This presentation contains the thermal and electrical analysis of the earth observation satellite Sentinel 2 equipped with a theoretical electrochromic radiator which is currently developed by TU-Dresden in cooperation within an industrial (Airbus Defence and Space GmbH) co-founded Graduate School. These electrochromic radiators are based on electrochemical cells and the intercalation of Li-Ions into transition-metal oxides.

The first results of our simulations show, that power savings (e.g. for payload heating) up to 100% are possible. A value of $\Delta\epsilon \ge 0.4$ seems to be the threshold for using electrochromic surfaces efficiently in thermal engineering of spacecrafts. They also make clear that the control speed of radiators α/ϵ is not highly relevant for thermal design due to the high thermal masses in the spacecraft.

These advantages are limited caused by still necessary redundant systems to ensure the survival of the payloads and the electrical power for the electrochromic radiator itself. These results encourage to more detailed investigations on a thermal control system using electrochromic radiators. The results of the Sentinel 2 thermal analysis will be presented and the restrictions will be discussed.

24.10.2017

31st annual European Space Thermal Analysis Workshop Slide

Oliver / Kluge TU-Dresden – Institute for Aerospace Engineering

+49 (0) 351 463-38239 +49 (0) 351 463-38126 т: F: e-mail: oliver.kluge@tu-dresden.de Airbus Mentor: Martin / Altenburg

Thermal Engineering, TSOTM13 Team Leader Payload Engineering

T: +49 (0) 7545 8-2494 F: +49 (0) 7545 8-18-2494 e-mail: martin.altenburg@airbus.com

24.10.2017

Slide 16 of 18

Appendix J

Thermal analysis approach for finding Bepi Colombo MTM SA wing generated PV power

Niels van der Pas (Airbus Defence and Space, The Netherlands)

Abstract

A thermal analysis was performed in support of the power analysis for the MTM wing of the Bepi Colombo mission. At 14 points in the mission the power and maximum incidence angle were requested. The temperature of the MTM solar array wing of the Bepi Colombo mission is highly dependent on the angle of incidence, especially when the space craft is close to the sun. As a result, small deformations due to thermal warping and production will have an effect on the temperature of the solar panels. These need to be accounted for in the analysis.

In a traditional approach these angles would be reflected directly into the ESATAN model. This would drastically increase the modelling effort and would in addition also require an extensive amount of manual iterations to find the worst case scenario with respect to the temperatures of the panels.

In order to save both time and to create flexibility a tool was constructed to find the maximum temperature per panel at these points in the mission for all solar array pointing and deformation angles without having to perform a new thermal analysis or remodelling.

Four different pointing parameters were considered. These different parameters were combined in a single equivalent solar aspect angle of the solar panel.

115 thermal cases were run in total. This resulted in a maximum temperature for all panels that could be interpolated as a function of the equivalent solar aspect angle.

Thermal analysis approach for finding Bepi Colombo MTM SA wing generated PV power									
Analysis Objective									
5									
Client side request:	Case	Day	ESH [hrs]	Sun [AU]	Distance				
 Determine: Loaded PVA hotspot temperature Unloaded PVA hotspot temperature Allowable limit pointing angle (in unloaded conditions) For 14 power cases Taking into account misallignements 	1 2 3 4 5 6 7 8 9 10 11 12 13 14	277.2 345.5 477.2 832.5 855.9 1224.0 1367.6 1519.1 1650.3 1780.6 1901.6 2408.3 2516.1 2553.2	6046 7218 10400 18249 19583 26877 30345 33114 38085 42061 45494 63819 68174 70683		1.1946 1.1286 0.8836 0.7500 0.6429 0.3946 0.3072 0.5412 0.6100 0.5955 0.5829 0.3842 0.3136 0.4621				
23 October 2017 5									
Thermal analysis approach for finding Bepi Colombo MTM SA wing generated PV power									
Analysis Objective									
Problem:Possibility of future changesLarge amount of cases (for every possible angle)									
Solution: Develop a tool and approach based on beta angle									
 Advantages: Robust for future requests Applicable to multiple situations (e.g. power or thermal calculations) Easy optimisation of pointing angle 									
23 October 2017 6		(US & SPACE				

31st European Space Thermal Analysis Workshop

	Thermal analysis approach for finding Bepi Colombo MTM SA wing generated PV power							
	Thermal modelling approach							
	Solar Distance < 0.62 AU							
The document and the convert is then property of Adrian Defence and Space. Advant Defences and Space Networkings (IV, A) table services, and Space.	 Approach: Predict the hotspot temperature for every power case for panel 1, 2 and 5 at min. 10 different SAA around a nominal estimate of the limit SAA. Predict the temperature response of all panels, as function of the SAA angle. Calculate the limit nominal pointing angle for every panel quadrant based on warp, panel deformation and SA pointing uncertainty. Assumptions: Wing 1 and 2 have similar temperature and temperature response (conservative) Hot spot temperatures panels 3 and 4 can be interpolated. 							
F 4	23 October 2017 15							
	Thermal analysis approach for finding Bepi Colombo MTM SA wing generated PV power							
	Temperature fit							
	Every solar panel element can be fitted to: $T_{hotspot} = A \cdot \cos(\beta) + B$							
	Where:							
rty of Airbus Defenoe and Space. V. Ali ridnas reserved.	 A,B are determined by fitting analysis results β = acos{cos(SAA_{nom} + SAA_{uncertainty} + warp) · cos(deform_{thermal})} 							
This document and Its content is the prope. Arbus Defence and Soare Netherlands B.								
	23 October 2017 16							

Appendix K

Time-Varying Thermal Dynamics Modeling of the Prototype of the REMS Wind Sensor

Maria-Teresa Atienza Lukasz Kowalski Sergi Gorreta Vicente Jiménez Manuel Domínguez-Pumar (Universitat Politecnica d'Catalunya, Spain)

Abstract

The objective of this work is to show the results from the analysis of the thermal dynamics of a prototype of the REMS 3D wind anemometer using the tools of Diffusive Representation (DR). DR is a mathematical tool that allows the description of physical phenomena based on diffusion using state-space models of arbitrary order in the frequency domain. From open-loop experimental measurements, where a current signal with a wide frequency spectrum is injected in the heaters, time-varying dynamical thermal models are extracted for different wind velocities. This models provide the temperature evolution of the parts of the system under study as a function of the power delivered to the heat sources.

The prototype of the wind sensor used in the experimental setup is based on thermal anemometry, which is the method that has been used in multiple occasions for the challenging task of wind sensing in Mars. It is based on the detection of the wind velocity by measuring the power dissipated of a heated element due to forced convection. This technique was employed in the wind sensor of REMS (Remote Environmental Monitor System) sensor suite, on board Curiosity rover since 2012. In 2018, it is expected to be launched the InSight (Interior Exploration using Seismic Investigation, Geodesy and Heat Transport) mission to Mars. It will include the TWINS instrument (Temperature and Wind sensors for InSight mission) which is an heritage from REMS. The prototype used in the experiments, is composed of three PCBs (Printed Circuit Board) placed on a cylindrical supporting structure (boom) at 120° from each other. Each PCB contains four Silicon dice set with Platinum resistors that are used as heating elements. The thermal dynamical characterization of one of the dice and its cross-heating with the boom is going to be presented.

OPEN-LOOP CHARACTERIZATION

OPEN-LOOP CHARACTERIZATION

• Time-varying thermal models are extracted from open-loop experiments using Diffusive Representation.

- These models provide the temperature dynamics of the components of the system under study as a function of the power delivered to the heat sources.
- Pseudo Random Binary Sequences (PRBS) of current are injected into the heat sources, while the temperature of different components of the system is sensed.
- During the experiment, different wind velocities are applied.
- The obtained thermal models follow the experimental data.

-200 10⁻³

v = +2.5 m/s

v = -2.5 m/s

v = 0

10⁻²

10⁻¹

10⁰

8th order diffusive symbol for three wind velocities

Frequency [Hz]

 10^{1}

 10^{2}

15

10

0

250

500

750

time [s] **Top**: Wind velocitis applied during the experiment

Bottom: Experimental data (blue) Vs Fitting data (red).

1000

1250

1500

1750 .

Appendix L

A MLI model based on transient model correlation

Jan Klement	Lena Bötsch	Jonas Klose	Christian Walker
	(Tesat-Spacecom (GmbH, Germany)	

Abstract

Measuring and predicting the thermal heat flux trough a MLI is a challenging task. A modelling approach is presented based on sectioning the MLI into different areas (Flat surface, corners and edges with and without seam). The parameters for this model are obtained using an inverse problem approach. Transient testing and model correlation is used instead of the typical steady state approach.

26.10.2017

8

26.10.2017

SPACECOM
TEST PROCEDURE
All bodies where tested with a similar procedure in a thermo vacuum chamber. Different body and environment temperatures where used.
The other of the other oth
0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -
26.10.2017 13
PIONEERING WITH PASSION
<image/> <section-header></section-header>

Сом	PARISON TO SIMULATION (BEFORE CORRELATION)
All to The	ests where simulated in Thermica using typical values. shroud temperature from the has been mapped onto the shroud nodes.
	Deviation to be minimized
	40 0 500 1500 2000 2500 3000 Time [min]
	26.10.2017 15
Cor	relation Software (developed at tesat)
 sensi File Parameters 	Sandhidy Raudis Sate Optimization Fell Vanadion
Parameters 1 variables nork	File Name Yalut Mn Mn Mn S Name Yalut Name Yalut Name Yalut Name Yalut Name Yalut Name Yalut Yalut Name Yalut Yalut Name Yalut Yalut <th< td=""></th<>
	1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1
	• 10 11wr/r64, 0.024 000 2 0 655
ADD FILE DEL FIL Commands for nor Type	Image: state Image: state Image: state Image: state Image: state Image: state Image: state Image: state Image: state Image: state Image: state Image: state Image: state Image: state Image: state Image: state Image: state Image: state Image: state Image: state
ADD FLE DEL FL Commands for nor Type 1 Batch • 2 •	Image: 1 1 Image:
ACO FLE DEL FE Commands for nor DEL FE 2 Commands for nor 2 Commands f	Image: 1 Image: 1 <td< td=""></td<>

of all 8 tests

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(2323 temperature differences in total)

0.3

0.

-0.0 -0.1 -0.1 -0.2 -0.3 -0.3 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.5 -0.5 -0.5 -0.5

select deselec

Limt exc enal start end

16

26.10.2017

MySensor /Body

18

26.10.2017

RESULTING MLI PARAMETERS FROM THE CORRELATION

Parameter	Effective conductivity*	Effective emissivity*
Flat area	0.004445 W/m ² K	0.003365
Corners	1.013198 W/m²K	0.000179
Closed Edges (only bent)	0.000101 W/m ² K	0.014994
Edges with overlapping MLI	0.264138 W/m ² K	0.007348

*) The conductivity and the and the emissivity must be used in parallel between the inner and outer layer.

These are effective nominal parameters. They fit to the results but their temperature dependency may not be accurate. The corresponding assessment of their accuracy is to discussed tomorrow.

26.10.2017

20

CONCLUSION

- » The advantages of transient testing are:
 - » No complicated and precise calorimeter is necessary
 - » Temperatures changes are used which can be measured quite accurate
 - » It is not necessary to wait until steady state is reached
 - » Each test gives a information for whole range of temperatures instead of one single point
 - » Only one temperature sensor is necessary inside the body
 - In other words: More data with an easier, faster and cheaper test.

» Correlation

» Broyden class algorithms needed only a few(<20) iterations to reach an optimum (transient model, 16 parameters, 8 configurations & tests, 2323 temperatures differences)

26.10.2017

Ουτιοοκ	
» The method can be used to extend the MLI model for:	
» Different corner angles	
» Stand-offs	
» Flaps	
» Slits	
» Different layer setup	
»Larger bodies	
» With more extreme temperatures the temperature dependency can be analyzed with higher accuracy.	
» The correlation software(Sensitool) can be obtained by other companies of the Airbus Group	
26.10.2017 23	
ΤΗΑΝΚ ΥΟυ	
Gefördert durch:	
Bundesministerium für Wirtschaft und Energie	
aufgrund eines Beschlusses des Deutschen Bundestages	
26.10.2017 24	

Appendix M

Methods to Improve Thermal Test Efficiency (MITTE)

Patrick Coutal (Airbus Toulouse, France)

James Etchells (ESA/ESTEC, The Netherlands)

Abstract

Thermal testing is part of the verification process needed on a space system. This necessary task is time-consuming and thus expensive due to both the physical phenomena (mainly thermal inertia) and the complexity of a system level verification in an environment representative of the flight mission worst cases (vacuum and temperature). These constraints require efficient methodologies and associated tools covering the whole process:

- Test preparation, especially instrumentation or test sequence definition;
- Test execution, especially test monitoring and real-time test shortening;
- Test exploitation, especially model correlation.

The ESA TRP Methods to Improve Thermal Test Efficiency (MITTE) resumes and extends the effort initiated by the EVATHERM and IAMITT previous ESA R&D activities. The presentation will then focus on the last developments involving the temporal and spatial extrapolations, the Infrared camera usage and the natural convection modelling in an industrial context.

Appendix N

Thermal Modelling of EarthCARE Instruments' Electronics Boxes

Allan Dowell (Thales Alenia Space, United Kingdom)

Abstract

The EarthCARE spacecraft has electronics boxes for the ATLID, BBR and MSI instruments which were produced by TAS in the UK and STFC RAL Space. The ATLID ACDM was thermally tested. It was found that the thermal design and ESATAN model needed updates to help components meet their derated limits. Various aspects of electronics design were investigated, looking at similar units (such as Cryocooler Electronics) and consulting with other engineers. Attempts were made to auto-generate more detailed 3D FE structure sub-models rapidly to improve predictions.

THALES ALENIA SPACE OPEN

ThalesAlenia

- Heat sinks thermal adhesives, Cho-therm, copped
- Straps copper, aluminium, Annealed Pyrolitic Graphite (APG)

Appendix O

Quality assessment for parameters obtained with model correlation

Jan Klement (Tesat-Spacecom GmbH, Germany)

Abstract

"Just because it is correlated it doesn't mean that is has anything to do with the reality". It is clear that parameters obtained from a model correlation can be completely wrong. The main question is how near to the real physical value are they. To partially answer this question an approach is proposed to estimate the uncertainty from parameters obtained from a model correlation.

30.11.2017

183

Reason: There are always the same number of overlapping edges as normal ones. Solution: Perform a test with a body only with overlapping edges.

Graph and data by Lena Bötsch and Jonas Klose 30.11.2017

					PIONEEPING WITH PASSION
Summary					FUNCENING WITT FOUND
» For a su	ccessful correlat	tion			
» Each p » This	arameter must is quantified wi	have an relev th the "observ	vant effect on vability factor	to at least or " (o)	ne temperature
»Each paran	arameter must neters	have an effe	ct which canno	ot be caused	by other
» This	is quantified wit	th the "indepe	endency facto	r" (i)	
» If still isr » Mode	i't possible to co error?	orrelate:			
» Meası	rement error?				
» Differ	ent definitions b	etween mode	and measure	ement?	
» Correl	ation Algorithm	Ś			
					30.11.2017 15
					TESA SPACECOM
					THE REPORT OF THE DALCE ON
Conclusio	N FOR THE MLI MO	DDEL			PIONEERING WITH PASSIO
Conclusion » All para	N FOR THE MLI MO	DDEL relevant effe	∍ct, but not all	are indepe	PIONEERING WITH PASSIO
CONCLUSIO » All para » Paramet accurate	N FOR THE MLI M meters have an ers with an low ly correlated.	DDEL relevant effe independenc	≥ct, but not all :y factor like t	are indepe he capacity	ndent. can be
CONCLUSIO » All parc » Paramet accurate » The para can only	N FOR THE MLI M meters have an ers with an low ly correlated. ameter for the e be seen as an	DDEL relevant effe independenc edge thermal effective valu	ect, but not all :y factor like t conductivity la Je without any	are indepe he capacity arge uncerto physical me	ndent. can be ainty. This value aning.

» Therefore when used in combination the model returns realistic heat fluxes within the temperature range tested, despite the individual values might be incorrect.

16

30.11.2017

	PIONEERING WITH PASSION
THANK YOU	
Gefördert durch:	
Bundesministerium für Wirtschaft und Energie	
aufgrund eines Beschlusses des Deutschen Bundestages	
	30.11.2017 17

Appendix P

FiPS® Thermal Fluid-Structure Interaction

> Patricia Netzlaf (Ariane Group, Germany)

Abstract

From 2012 to today the DLR has been supporting the enhancement of FiPS[®](Final Phase Simulator), an in-house developed software tool for coupled simulations, in the frame of the launcher maturation projects PREPARE (completed) and PROCEED (ongoing). This is the presentation of the achievements of the work package "FiPS[®]" of these two projects.

Before the PREPARE project began in 2012, a first implementation of FiPS[®] was used to simulate the mutual influence of upper stage movement and propellant sloshing only. In the course of further development, the feature of a thermal coupling between FLOW- 3D (CFD tool) and ESATAN-TMS (thermal tool) was implemented into FiPS[®]. This enables the simulation of both dynamic and thermal fluid-structure interactions at the same time.

The thermal coupling is realized by a "one-to-one" approach between FLOW-3D and ESATAN-TMS. FLOW-3D uses the finite volumes method: A volume containing the geometry of interest is subdivided into smaller 3D cells. FLOW-3D's role within the thermal coupling is to calculate propellant motion and temperature distribution in the propellant's liquid and gaseous phase. ESATAN-TMS on the contrary uses the finite differences method: An object is broken down to subcomponents represented by nodes. The task of ESATAN-TMS is to compute heat conduction within the tank wall in this context. By means of a "one-to-one" approach, data exchange is realized between one FLOW-3D tank wall cell and one ESATAN-TMS transition node. This way, quantities of state, like temperature and heat flux, are transferred between the two tools at run-time. Visualization of simulation results is realized in form of diagrams and 3D animations.

Adding the feature of the thermal coupling was a logical consequence when considering cryogenic liquids as propellants. For the first time, temperature development in propellants and surrounding tank wall structures can be resolved with high precision, as the considered system reacts at simulation run-time to the motion of the propellant. Precision is only limited to the accuracy of the implemented software tools. As a consequence of temperature changes, evaporation rates and thus pressure development can be derived. This aids the improved design of structures, propulsion systems, insulations, attitude control systems, mission profiles and other design disciplines.

OUTLINE

01 BACKGROUND	03
WHAT IS FIPS®?	04
02 FUNCTIONAL PRINCIPL	.E05
BUILDING BLOCKS	06
SIMULATOR SCHEMATIC	07
03 THERMAL COUPLING	08
MODELLING APPROACH	09
MODELLING IMPLEMENTATION	10

)3 04	04 VISUALIZATION VISUALIZATION BASICS	11 12	
05	VISUALIZATION ENHANCED	13	
06 07	05 SUMMARY & OUTLOOK SUMMARY	14 15	
)8 09	OUTLOOK	16	
10			
PROCEE	D	30.11.2017	2

30.11.2017 14

Appendix Q

Multi-dimensional Ablation and Thermal Response Program for atmospheric entries

Viola Renato (University of Strathclyde, Scotland UK)

Abstract

The method presented herein couples a reduced order aerodynamic model (HyFlow) and an ablative material response code (ARC) to produce three dimensional estimations of the external flow characteristics and the internal TPS behaviour during an atmospheric entry. Both codes have been internally developed at Strathclyde University.

The ablative material solver is a unidimensional code, based on the explicit finite difference method which has the capability of evaluating the internal temperature gradients, the pyrolysis phenomenon progression, the change of state and density in the material and the production of pyrolysis gases. If the material B tables are available, the code can also calculate the charred material mass flux and the material recession rate.

In this methodology, the ARC program is applied on a grid of points surrounding the entire geometry to produce an evaluation of the TPS behaviour on the whole spacecraft surface. The coupling of these two codes has been designed to produce fast three dimensional analyses to better evaluate the differences introduced by small changes in the spacecraft trajectory and geometry or in the TPS composition. This methodology has been previously utilized to evaluate both Earth and Martian entry trajectories (Stardust and Pathfinder missions). For this workshop, the study of the ARD re-entry is presented with a comparison against results generated by higher order codes and flight data. This case is of particular interest because it presents an angle of attack which makes the case non axis-symmetrical. The approach presented herein always performs three dimensional calculations of the atmospheric entry, therefore the symmetry of the flux or the lack of this symmetry does not influence the computational time. Consequently, complex non symmetric cases are just as easy to simulate as symmetric ones. The code is also able to simulate a capsule made by different TPS of different thickness. The entire re-entry trajectory run can vary from a few minutes to half an hour depending on the trajectory duration and the spacecraft mesh; the ARD re entry takes around 20 minutes for a trajectory duration of 240 s and for a mesh formed by around a thousand vertices.

Code Coupling

Centre for Future Air-Space Transportation Technology

The steps in the simulations are:

- HyFlow estimates the three dimensional heat flux around the geometry for first time instance during entry.
- The one dimensional material code is applied on every geometry vertex.
- An evaluation of the material behaviour on the entire geometry is generated.
- The recession values are implemented and the new geometry is created.
- The same steps are repeated until the completion of the entry trajectory.

Test case: The Atmospheric Re-entry Demonstrator ARD

Strathclyde Glasgow

- Material: ALEASTRASIL
- Thickness: 20 mm

Time instances for the entry trajectory:

time (s)	velocity (m/s)	altitude (km)
4886.56	7554.83	78.7536
4912.72	7470.65	74.4595
4930.99	7329.8	71.4605
4952.04	7073.58	68.0047
4970.82	6786.07	64.9223
4990.45	6467.55	61.7003
5012.07	6097.09	58.1505
5021.5	5924.88	56.603
5040.82	5514.98	53.4314
5060.58	4949.71	50.1874
5078.88	4338.34	47.1828
5096.83	3733.77	44.2373
5116.45	3074.3	41.0169
5133.22	2526.46	38.263
5155.41	1851.32	34.6205
5178.19	1266.9	30.8815
5198.89	838.137	27.4829
5218.11	547.725	24.3278
5237.66	310.017	21.1195
5262.31	199.981	17.0727
5273.39	173.541	15.2532

25/10/2017

• 9

Viola Renato

Viola Renato

• 13

25/10/2017

Conclusions:

X ¥

Conclusions & future work

- The results presented show that it is possible to use the presented approach to evaluate the internal material behaviour and external flux aerodynamics during the atmospheric entry phase of a space mission in three-dimensional space.
- Short computational time: from 4 minutes to half an hour depending on the geometry and the re-entry duration.

Future work:

- The verification of the method on a real TPS structure: different materials for different parts of the spacecraft geometry and different thicknesses.
- Coupling of the thermal response code with a more precise/reliable aero-thermodynamic model: on-going.

Centre for Future Air-Space Transportation Technology

Viola Renato

Thank you for your attention

Viola Renato

25/10/2017 • 15

Appendix **R**

ESATAN Thermal Modelling Suite Product Developments

Chris Kirtley (ITP Engines UK, United Kingdom)

Abstract

A major focus of ESATAN-TMS development this year has been on providing facilities within Workbench to meet current and future requirements of space projects, and to provide features in direct response to requests from Customers. This presentation will outline all the developments going into ESATAN-TMS 2018.

Present new features within the release

31st European Space Thermal Analysis Workshop

Save the attachment to disk or (double) click on the picture to run the movie.

Save the attachment to disk or (double) click on the picture to run the movie.

217

Save the attachment to disk or (double) click on the picture to run the movie.

Save the attachment to disk or (double) click on the picture to run the movie.

🔟 i 🛛 📒 🛊 exîlî Siriyak Madel		S ESAZAN-TINS Workberch					- 0 x
File Home Share View		Fie Define Geometric	Radiative Thermal	Reporting Utilities	Post-Process		•
← → + ↑ ○ α eu. 1 ed].	Sen. v O Sen	14 19 3	Įк 🗰	H S	Constant	E Train (H) Real Matter	Veusieaton
Quick access Downloads	GSG_Sat.ere	General Group Property	Condition Billindece	Zhie Container	Material Set 25 Loposi	Ac string	Tools ~
Documents #	GSG_Sat.erg GSG_Sat.erk	Model Tree		alsaten Reports			······································
Desktop	GSG_Saturni GSG_Sat_heat.exb	Library	1				
RGR - 10 October 2017	GSG_Sat_power.exb						
Thermal Workshop 2017							
This PC							
Desktop							
Downloads							
Pictures							
System (C.)							
Data (D.)							
Admin (\\sfwso20043.itpuk.sys							
resources (\\sfwso10051.kp-uk							
 tpshare (\\sercor.tp.es) (5) temporary (\\sfwso20052.itpuk 							
ar Network							
		P[see.					
		Command History	*				
		Picking and Properties	8	Raticati	Reset Citize Details	Picking Model Face	Tracoparing:
3	_	The second s			0	0 0 0 Delai	
s dems	wa tha att	achmont to a	lick or (dou	ubla) aliak	on the nictur	ra ta run tha	movio
50			lisk of (uot	ioic) click	on the pietu		
	OTAN	-TMS		Cont	rol of No	de Numb	ers
	thermal mode	lling suite		Cont			
					Geometry	Radiative	Thermal Post-
1.1					Modelling	Analysis	Analysis Process
• Fxt	ende	d cont	rol of	node	numbe	rs	
LAC	chac	a com		nouc	mannac		
— F	SATAN	I-TMS	017 in	trodu	izze han	aning "k	locks"
L			.017 111	uouu		Sinne r	JIUCKS
(of nod	e numb	ers to	selecto	ed geom	netrv	
		C	0.0.00		0.000	,	
1 —	Now e	xtended	d to cor	ntrol n	ode inc	rement	within
					1561 1571 7		4306
e	each m	neshing	directi	on 1	55, DP 14€ 156 12€		4404000
	▼ Su	Irface Properties				4400	4402
	Label		Nose Cone		1492		4304
	Activit	ty	Active		106 122	4300	4302
	Radiat	tive Criticality	NORMAL		138		4204
	Subm	odel Name	Nose_Cone		1382804		
	Optica	al Coating	myOpt		134	4200	4202 5
	Colour	Node Number	4 000		132 102		4104
	Node	Increment in Direction 1	2		146	1700	
	Node	Increment in Direction 2	100		100	4100	4102 4004
	Node	Increment in Direction 3					
	Node	Increment in Direction 4				4000	4002
	1				Toes		

• Thermostatically controlled heaters

- Define control within Workbench
- Steady state and transient operation
 - Transient: On/Off or Proportional
 - Steady State: Fixed, Setpoint or Proportional

Set-point mode automatically calculates steady state heat loads

- Library routines to define and report heater status
 - Applied load, duty cycle, number of switches, ...

225

Save the attachment to disk or (double) click on the picture to run the movie.

Comparison of multiple cases against limit data Orgaphical and/or tabular display Virtual data data data data data data data da		SAJ therma	'AN-		5			Post	-proce	ssing			
Extended for Limits Charts - Comparison of multiple cases against limit data - Comparison of multiple cases against limit data - Comparison of multiple cases against limit data - District and/or tabular display - Vinterest aga again	ŶŶ							Geo Mod	metry delling	Radiative Analysis	The	ermal alysis	
	• Ex	ten	ded	l for	Limit	s Cł	nart	S					
Comparison of multiple cases against innit data – Graphical and/or tabular display <u>Average Te.</u> Unit_1 <u>39 40 40.329 4386.429 42.229 45.074 907.537 47.074 48 55 Average Te. Unit_2 35 36 37.145 393.148 39.446 42.241 0 44.241 47 55 Average Te Unit_3 35 36 37.107 378.892 39.107 41.907 0 43.907 46 55 Average Te Unit_5 20 22 21.433 2117.587 23.433 36.657 907.537 37.657 45 55 </u>		Con		licon	ofm	امناار			aaina	+ lina	:+ d	oto	
Linitian Image 1		COL	npar	ISON	ormu	лирі	e ca	ses a	agains		πu	dld	
Auribute Element Lo Lo Min - Uncert. Time of Min Min Max Time of Max Max + Unce. H H H Average Te Unit_1 39 40 40.329 4386.429 42.329 45.074 907.537 47.074 48 55 Average Te Unit_2 35 36 37.446 3830.148 39.446 42.241 0 44.241 47 55 Average Te Unit_3 35 36 37.107 3478.892 39.107 41.907 0 43.907 46 55 Average Te Unit_4 20 25 26.751 2117.587 28.751 41.816 907.537 43.816 45 55 Average Te Unit_5 20 22 21.433 2117.587 23.433 36.657 907.537 45 55 Unit_2 - Average Temperature Unit_5 20 21 22 20 30 31 32 33 34 36 39 40 41 42 43 44 45 45 45<		~											
Attribute Element Lo Lo Lo Min - Uncert. Time of Min Min Max Time of Max Max + Unce Hi Hi Hi Average Te Unit_1 39 40 40.329 4386.429 42.329 45.074 907.537 47.074 48 55 Average Te Unit_2 35 36 37.446 3630.148 39.446 42.241 0 44.241 47 55 Average Te Unit_3 35 36 37.107 3478.892 39.107 41.907 0 43.907 46 55 Average Te Unit_4 20 25 26.751 2117.587 28.751 41.816 907.537 37.857 45 55 Average Te Unit_5 20 22 21.433 2117.587 23.433 36.657 907.537 37.657 45 55 Unit_5 20 21 22 29 30 31 32 33 39 40 41 45 46 47 48 40 60 51		Gra	phic	al an	d/or t	tabu	lar c	Ispla	IV				
Attribute Element Lo Lo Lo Nin - Uncert. Time of Min Max Time of Max Max + Unce. Hit + Average Te Unit_1 39 40 40.329 438.429 42.329 45074 907.537 47.074 483.02 55 Average Te Unit_2 35 36 37.46 363.148 39.46 42.241 0 42.241 47.075 45.075 55 Average Te Unit_4 20 25 26.751 2117.587 28.751 41.816 907.537 43.816 45.05 55 Average Te Unit_5 20 2 21.433 2117.587 28.751 41.816 907.537 37.857 45 55 55 Average Te Unit_5 20 2 21.433 2117.587 28.343 36.657 907.537 37.857 45 55 55 Unit_1 Average Temperature Unit_5 20.21 2.2.2 20.21 2.2.2 20.21 2.2.2 20.21 2.2.2 20.21 2.2.2.2 2.2.2 2.2.2<			•					•					
Average Te Unit_1 39 40 40.329 4386.429 42.229 45.074 907.537 47.074 48 55 Average Te Unit_2 35 36 37.466 3930.148 39.466 42.241 0 44.241 47 55 Average Te Unit_3 35 36 37.107 3478.892 39.107 41.907 0 43.907 46 55 Average Te Unit_4 20 25 26.751 2117.587 28.751 41.816 907.537 43.816 45 55 Average Te Unit_5 20 22 21.433 2117.587 28.433 36.657 907.537 37.657 45 55 Unit_5 20 22 21.433 2117.587 28.433 36.657 907.537 37.657 45 55 Unit_5 Vortase Temperature Unit_5 Vortase Temperature Unit_1 Average Temperature Unit_3 Average Temperature Unit_5 <td colspan="4</td> <td>Attribute</td> <td>Element</td> <td>Lo Lo</td> <td>Lo</td> <td>Min - Uncert</td> <td>Time of Min</td> <td>Min</td> <td>Max</td> <td>Time of Max</td> <td>Max + Unce</td> <td>Hi</td> <td>Hi Hi</td>	Attribute	Element	Lo Lo	Lo	Min - Uncert	Time of Min	Min	Max	Time of Max	Max + Unce	Hi	Hi Hi	
Average Te Unit_2 35 36 37.466 3830.148 39.466 42.241 0 44.241 47 55 Average Te Unit_3 35 36 37.107 3478.892 39.107 41.907 0 43.907 46 55 Average Te Unit_4 20 25 26.751 2117.587 28.751 41.816 907.537 43.816 45 55 Average Te Unit_5 20 22 21.433 2117.587 23.433 36.657 907.537 37.657 45 55 Unit_5 20 22 21.433 2117.587 23.433 36.657 907.537 37.657 45 55 Unit_5 20 22 21.433 2117.587 23.433 36.657 907.537 37.657 45 55 Unit_5 Unit_5 Unit_5 Unit_5 Unit_5 Unit_5 Unit_5 Unit_6 Unit_6 Unit_6 Unit_6	Average Te	Unit_1	39	40	40.329	4386.429	42.329	45.074	907.537	47.074	48	55	
Average Te Unit_3 35 36 37.107 3478.892 39.107 41.907 0 43.907 46 55 Average Te Unit_4 20 25 26.751 2117.587 28.751 41.816 907.537 43.816 45 55 Average Te Unit_5 20 22 21.433 2117.587 23.433 36.657 907.537 37.657 45 55 Unit_5 20 22 21.433 2117.587 23.433 36.657 907.537 37.657 45 55 Unit_5 20 21 22 21.433 2117.587 23.433 36.657 907.537 37.657 45 55 Unit_5 40 40 40 40 40 40 40 50 51 52 55 Unit_1 Average Temperature 10 20 21 22 20 20 31 32 30 30 40 41 42 40 40 40 50 51 52 53 54 55	Average Te	Unit_2	35	36	37.446	3630.148	39.446	42.241	0	44.241	47	55	
Average Te Unit_4 20 25 26.751 2117.587 28.751 41.816 907.537 43.816 45 55 Average Te Unit_5 20 22 21.433 2117.587 23.433 36.657 907.537 43.816 45 55 Average Te Unit_5 20 22 21.433 2117.587 23.433 36.657 907.537 37.657 45 55 Unit_5 20 22 21.433 2117.587 23.433 36.657 907.537 37.657 45 55 Unit_5 Unit_6 Unit_6 <td colspa<="" td=""><td>Average Te</td><td>Unit_3</td><td>35</td><td>36</td><td>37.107</td><td>3478.892</td><td>39.107</td><td>41.907</td><td>0</td><td>43.907</td><td>46</td><td>55</td></td>	<td>Average Te</td> <td>Unit_3</td> <td>35</td> <td>36</td> <td>37.107</td> <td>3478.892</td> <td>39.107</td> <td>41.907</td> <td>0</td> <td>43.907</td> <td>46</td> <td>55</td>	Average Te	Unit_3	35	36	37.107	3478.892	39.107	41.907	0	43.907	46	55
Average Te Unit_5 20 22 21.433 2117.587 23.433 38.657 907.537 37.657 45 55 Unit_5 20 22 21.433 2117.587 23.433 38.657 907.537 37.657 45 55	Average Te	Unit_4	20	25	26.751	2117.587	28.751	41.816	907.537	43.816	45	55	
Units Hot Case Temperatures Results 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 40 50 51 52 53 54 55 Unit_1- Average Temperature Unit_3- Average Temperature Unit_5- Average Temperature	Average Te	Unit_5	20	22	21.433	2117.587	23.433	36.657	907.537	37.657	45	55	
Unit_1 - Average Temperature Unit_2 - Average Temperature Unit_3 - Average Temperature Unit_5 - Average Temperature			19 20 21 2	22 23 24 26 2	Units Ho 6 27 28 29 30	t Case Te	mperatu	res Result	S 41 42 43 44 44	5 48 47 48 4	9 50 51	52 53 54 55 56	
Unit_2 - Average Temperature Unit_2 - Average Temperature Unit_5 - Average Temperature Unit_5 - Average Temperature Unit_5 - Average Temperature	Unit_1 - Average	Temperature											
Unit_3 - Average Temperature Unit_5 - Average Temperature Unit_5 - Average Temperature	Unit_2 - Average	Temperature									· · · · · ·		
Unit_4 - Average Temperature	Unit_3 - Average	Temperature									· · · · · ·		
Unit_5 - Average Temperature	Unit_4 - Average	Temperature											
		Temperature											
	Unit_5 - Average												

Appendix S

Data exchange for thermal analysis a status update

James Etchells

Duncan Gibson Harrie Rooijackers (ESA/ESTEC, The Netherlands) Matthew Vaughan

Abstract

This short presentation will give a factual overview of the current status for thermal analysis data exchange.

ESA UNCLASSIFIED - For Official Use

European Space Agency

James.Etchells@esa.int | ESTEC | 25/10/2017 | Slide 4

📻 I+I

Appendix T

SYSTEMA - THERMICA

Antoine Caugant Rose Nerriere Tomothée Soriano (Airbus Defence and Space SAS, Toulouse, France)

Abstract

The Systema-Thermica software supports engineers in facing the present and future challenges of space thermal analysis. Several improvements and new features were recently implemented.

First of all, the Systema 3D engine efficiency was raised up to ten times by using an optimized rendering mode. This performance boost enables the modelling of complex thermal behaviors on large models with more than 80 000 meshes.

Simulations with uncertainties on input parameters are made more flexible using advanced parametric analysis. Systema-Thermica provides advanced variables defined with inter- dependencies as well as user-defined GUI to set Python scripts parameters values on the fly.

Besides, a deep rework of cutters management enabled the definition of both finite and infinite cutting shapes including transformations. Users can choose between inside or outside cuttings. These features being Step-TAS-compatible, sharing the resulting geometry with other tools is straightforward.

Enhancements were also performed on various thermal analysis topics such as sensors modelling, infrared camera management and thermal convection, which helps analysists in providing their expertise over a wider set of thermal phenomena.

Finally, a detailed study on a large panel of Systema users, revealed some promising improvement opportunities in the Systema GUI ergonomics. Various improvements are scheduled to facilitate the training of novice users and increase the efficiency of experts.

- Possibility of stratification within fluid cavities
- \rightarrow Ongoing work of stabilization
- → These modules will be included in the next release of Systema (4.8.2)
- · Perspectives: prepare the next Long Term Support Version (LTS)
- Stabilize current functional thermal scope
 - Improve the User Manual coverage

25 October, 2017 SYSTEMA-THERMICA

 $GL(I,J) = k.S.\Delta T^{\alpha}$ Surface/Air conducto-convective coupling

AIRBUS

→Systema proposes a boosted 3D rendering algorithm to enable easy manipulations of large models

12 25 October, 2017 SYSTEMA-THERMICA

AIRBUS

Radiator Systema meshing, designed for small condensers/heaters (~67 000 meshes)

Appendix U

Model correlation of Meteosat Third Generation Platform STM

Emmanuelle Fluck (OHB System AG, Germany)

Abstract

Meteosat Third Generation (MTG) is a series of meteorological satellites, which will take over the service provided currently by MSG. The series consist in 6 satellites: 4 Imagers (MTG-I) and 2 Sounders (MTG-S) having a common platform.

End of 2016, a Thermal Vacuum Test has been performed on a Structural Thermal Model (STM). The test's goal was on one hand to correlate the thermal model and on the other hand to qualify the structure. This presentation describes the process of model correlation from test ending until the results production. First, the thermal balance test is briefly introduced in order to set up the context and define the technical terms. The whole sequence starting with retrieving the data from the test, implementing these data into the thermal model using the ESATAN-TMS software and finally reducing the deviations between predicted and measured temperatures is presented. To illustrate the correlation process, explicit examples will be shown.

Suggestions of ESATAN tools or functions

```
MTG-STM correlation / 24.10.2017
```

Page 2

OHB System AG

MTG-STM correlation	ОНВ
 STM Thermal Balance test Objective: thermal model correlation and TCS 3 phases : hot balance, cold balance, safe models STM configuration (platform only): Full structure Units: mechanical and thermal dummiest with fixed current (EGSE) 1 EM : reaction wheel Heaters controlled in pulse width modulat EGSE IABG chamber 600 Thermocouples Type T Heater control thermistors NTC 15K Test heaters supplied with fixed current 	st verification de balance (MTD) supplied (MTD) supplied (The ation (PWM) with (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Use of shunt boxes on some power supplies for	Dr MORE ACCURACY Change of set points and VAE HP 14-12-2016 and time 23:55 hs
MTG-STM correlation / 24.10.2017	Page 3 OHB System AG
MTG-STM correlation	ОНВ
MTG-STM correlation STM GMM overview	OHB
MTG-STM correlation STM GMM overview • Hybrid model MTG S/I • Thermal Chamber model (provided by	(IABG)
<section-header><section-header><list-item><list-item></list-item></list-item></section-header></section-header>	<image/> <section-header><section-header><section-header><image/><image/></section-header></section-header></section-header>
<section-header><section-header><list-item><list-item></list-item></list-item></section-header></section-header>	<image/> <section-header><image/><image/><image/><image/><image/><image/></section-header>

MTG-STM correlation

Correlation process

- Post-processing strategy
 - Compare temperatures between test and model
 - Compare duty cycles between test and model (for transient runs)
- Correspondence Sensors (thermistors/thermocouples) and nodes: linear interpolation

MTG-STM correlation ηнв Correlation process Correlation process: from the most global to the most local Correlate the OSR emissivity to reach a correct average T on radiators • Emissivity variation from 0.8 to 0.89 Typical correlated value around 0.83 • Correlate MLI performance Effective emissivity defined by a temperature dependent array • Eff. Emissivity multiplied by a **performance factor** for each blanket • Correlated performance factor for external MLI: 1.25 • Panels in plane/out of plane conductivity (aluminum and CFRP): low sensitivity of the model Adjust the unit conductive I/F · Local correlation issues implying remodeling MTG-STM correlation / 24.10.2017 Page 10

257

OHB

Correlation example 3 : Pipework (2)

- To decrease the general temperature level (in steady state analysis), radiative leaks have to be increased by correlating the **chofoil properties**.
- The final correlated values are:
- Radiative area increased by 50%. This is justified by integration reasons: overlapping chofoil layers, inclusion of the propulsion tubing heater, wrinkles
- Piping longitudinal conductivity increased assuming 2 layers of chofoil instead of 1 (+60%)

MTG-STM correlation / 24.10.2017

Page 15

OHB System AC

Appendix V

Development of a Modularized and Scalable Thermal Model for Small Satellites

Alexander Zwiebler	Oliver Kluge	Claudius Birkefeld	Dr. Tino Schmiel
	Prof. Dr. N	Aartin Tajmar	
(I	Dresden University o	of Technology, Germany)	

Abstract

Thermal analysis of pico- and nano satellites is a underestimated field, judged from our own experience and feedback from other small satellite developers around the world. Sophisticated thermal engineering during all project phases is a difficult task and is often only done late in phases C and D.

Therefore it is our goal to provide small satellite developers with a modular and scalable thermal model that will simplify building new models step by step with quick and reliable results.

We did research on various small satellite design schemes and came up with a preliminary modularized thermal model, which is using building blocks (e.g. for PCBs and structure). These modules can have various levels of detail, so you can start thermal analysing from the beginning. The model is written in MatLab, using ESATAN- syntax and is scalable from 1U to 4U CubeSat size.

First results of our interim model prove that a modularized and scalable thermal model works in principle. The development is still ongoing. We will add more levels of detail to our modules to cover various design approaches for an assembly. Currently we are evaluating costs and licensing concepts of different commercial thermal modelling solutions to use at university. The evaluation of our modelling approach by thermal-vacuum test is also still open. The results of our concept will be presented and the restrictions and doubts will be discussed.

Faculty of Mechanical Science and Engineering, Institute of Aerospace Engineering, Chair of Space Systems

Development of a Modularized and Scalable Thermal Model for Small Satellites

Alexander Zwiebler *), Oliver Kluge, C. Birkefeld, T. Schmiel, Martin Tajmar

Institute of Aerospace Engineering, Technische Universität Dresden 01062 Dresden, Germany alexander.zwiebler@tu-dresden.de

Noordwijk, 25.10.2017

© : Compass-1, FH Aachen

31st annual European Spa

SOMP

25.10.2017

SOMP-2

TECHNISCHE UNIVERSITÄT DRESDEN Prelin	minary GUI	
Structure	Solar Cells PCB Battery Orbit Result	s
Runtur Saucchi FCI Belay Dale Rusa:	Sector Set Ch K3 later Oot Reals	Structure Sole-Ceft PC3 (Beney Cells Route
And out		Halfford (Sale Bang (K)) Held Carlos (K) Held Carlos (K) He
Robert Stelling, Hit Hanny Oder Stealt.	Notes: Sin Ch. P3 Ben; Oth Real:	Rocket Self Ch PG Barry Old Roch
Basel Montos entró Souri Basel Montos entró Souri Manto Harris Basel Montos entró Souri Basel Montos entró Souri Basel Montos Entró Souri Basel Montos entró Souri Basel Montos Entró Souri Constantes Escala Montos Entró Constantes Escala Montos Entró	two ments train ments train	saar wa

TECHNISCHE UNIVERSITAT Preliminary GU	JI
Structure Solar Cells PCB Ba	attery Orbit Results
Structure Solar Cels PG Battey Orbit Results	Structure Solar Cells PCB Battery Tohn Results
25.10.2017 31st annual European Sp	pace Thermal Analysis Workshop Slide 13 of 16

	Preliminary GUI
	Structure Solar Cells PCB Battery Orbit Results
Structure Solar Cells (PCB) Battery Onith Besults	Structure Solar Cells PCB Battery Orbit. Results
Parting Parting Parting Parting Parting Parting Parting Parting Origin O	State Text
25.10.2017	31st annual European Space Thermal Analysis Workshop Slide 14 of 16

Faculty of Mechanical Science and Engineering, Institute of Aerospace Engineering, Chair of Space Systems

Development of a Modularized and Scalable Thermal Model for Small Satellites

Alexander Zwiebler *), Oliver Kluge, C. Birkefeld, T. Schmiel, Martin Tajmar

Institute of Aerospace Engineering, Technische Universität Dresden 01062 Dresden, Germany alexander.zwiebler@tu-dresden.de

Noordwijk, 25.10.2017

Appendix W

DySCo improvement of thermal vacuum test monitoring and exploitation in real time

Guillaume Pelissier (Airbus Toulouse, France)

Abstract

Airbus Defence and Space develops DySCo, an application for satellite thermal vacuum test monitoring and exploitation in real time, which brings together within the same environment measurement data acquisition, data display on the numerical model, comparison to simulation and model updating. DySCo, acronym for "DynaWorks - Systema Collaboration", is based on two software packages dedicated to test and simulation domains. The first one is an integrated solution for test data storage and analysis; the second one quantifies the interactions between a satellite and its environment. The goal of this collaboration is to improve satellite thermal vacuum test process by displaying real time temperatures and powers on the satellite 3D model, extrapolating test results on non-instrumented nodes and comparing test to simulation.

DEFENCE AND SPACE

Context and objectives

DynaWorks, in a few words:

25 October, 2017

- An integrated solution for data storage, management, visualization, analysis and reporting
- Compliant with **mixed** data formats (metadata, time series, frequency responses, pictures, documents) from multiple sources
- Open solution to provide a platform to host all the corporate application (API Python, user functions, scripts, plug-ins)

31th European Space Thermal Analysis Workshop

25 October, 2017 31th European Space Thermal Analysis Workshop

10

AIRBUS

DySC

Save the attachment to disk or (double) click on the picture to run the movie.

	ons								- 0
abase Edit View Tools Window	Help				_				_
自馬調方大會	"や ※ 前前す (
	1 🌬 📖 zâ 🖾 🚳 🔛	🧕 🚓 📲) Hannerder	unite Rosser						Q. Sainth
MeasuredResponse ((180287)		and a							
v 🕁 Favorites	n] T Class T TeenName	(a) Sensorhame	 Label 	T Channel (*) Xilnit	(*) Valuedinit	The Wester I a	abrinthise (*) Equipment	initiaTime	* Commen
😥 Thermal Meshings (3)	Metsweet Recorne VIS	Clearenty TR C TWT 8221	C TWT 8221	3062 4	-	Valid	On units TR	10/07/2017 14:48:41	C. C. C.
🗟 Alarm levels (1)	A MamuradRepporte VTS	On units TR PostPro7208	PostPap7208	1267.1	10	Invalid	On units TR	19/07/2017 14/48/41	
el: Events	MenuredReporte VTS	On TRP ReciputC 8035	PanieverC 8035	3227 5	10	Invalid	On TRP	19/07/2017 14:48:41	
Physical sensors (4349)	A MemuredReporte VTS	SCTHERMIOU TE4 GN2 REFROS	TEA GN2 REFROS	1001 s	*	Walig	SS THERMIOU	19/07/2017 14:48:41	
Responses (105389)	- Manuraditimpome V75	SC THERMICH TET IGN2 S T41	757 1GN2 5 74.1	1007 1	·C.	Walid	SSTHERMIOU	19/07/2017 14:48:41	
Predicted responses (ManuredReeponse VTS	SS THERMIOLI TET 2GN2 5 T42	TET.2GN2 5 T4.2	1013 5	×.	Valid	SS THERMIOU	19/07/2017 14:48:41	
Test phases (11)	10 (Martin 1997)	23. Inchange, reacond and	TETA STOL STOL			TRIG		13/01/2011	
🖉 Tests (1)	c					< Manual	Chem - Mann	Concernent Martin	man data 11
	24				_		responses - South - Free		cetter our
									- III''
Specific items Geometric meshing									
> Specific items > Georatic mething > LitherCMFloor > LowerCMFloor 1 INTERNAL ML1 > UpperCMFloor > SM > HARRESS - CVL pressarts > THE STATES > THE									
Specific terms 1 > Identific mething 1 > Identific mething 1 > Identific Million 1 > Identific Million 1 > Identific Million 1 > SM 3 > MARYNES 1 > SHEARWALLS 1 > SADM 1 > RCE 2 > Fear Million 1 > STEARWALLS 1 > STEARWALLS 1 > STEARWALLS 1									
Specific remaining IssuerCMFilor IssuerCMFilor IssuerCMFilor IssuerCMFilor IssuerCMFilor IssuerCMFilor IssuerCMFilor IssuerCMFilor IssuerCMFilor SMM IssuerCMFilor SMM IssuerCMFilor SMM IssuerCMFilor SMM IssuerCMFilor SMM IssuerCMFilor SMLARKELS_SM IssuerCMFilor SADM RCI2 +r/CMMail IssuerCMFilor -YCCMWail IssuerCMFilor -YccMmail IssuerCMFilor -YccMmail IssuerCMFilor -Ycommail IssuerCMFilor									
Specific terms 1 > InterC/MFloor 11 > SHEARWALLS 11 > SHEARWALLS 11 > Fredat 11 > Fredat 12 > -VCCMWall 12 > Fredat 12 > Fredat 12 Schected roder: 1 12	11946621 1194622 4182302 1194623 1194623 1194623 1194623 1196								* 11 • • •

Save the attachment to disk or (double) click on the picture to run the movie.

Save the attachment to disk or (double) click on the picture to run the movie.

DEFENCE AND SPACE Conclusion Current use of DySCo: · First operational use on a telecommunication satellite during summer 2017 · Quick comparison to simulation for model updating - Global view of the satellite \rightarrow Easy detection of a measurement problem · Centralization of test and simulation data · Distributed as a DynaWorks application package* Perspectives: · Use of DySCo for all Airbus DS vacuum thermal tests · Improvement of extrapolation precision using IR camera measurements · Integration of automatic updating Tests time reduction using temporal extrapolation · Reduction of tests number for fleets using IR camera and convection (*) For more information, contact DynaWorks support team: support@dynaworks.com **AIRBUS DySC** 18 25 October, 2017 31th European Space Thermal Analysis Workshop Thank you AIRBUS Copyright Airbus Defence & Space

Appendix X

List of Participants

Alahmadi, Abdulaziz

National Satellite Technology Center Saudi Arabia 😒 aaalahmadi@kacst.edu.sa

Alejo, Ares

Airbus Defence & Space France ☑ alejo.ares@airbus.com

Altenburg, Martin

Airbus Defence And Space Gmbh Germany ☆ martin.altenburg@airbus.com

Alvarez Copano, Miguel

Max-Planck-Institute for Solar System Research Germany 2 alvarez@mps.mpg.de

Atienza, Maria Teresa

Universitat Politecnica De Catalunya Spain 😰 maria.teresa.atienza@upc.edu

Atinsounon, Paul

Beck, Felix

Estec The Netherlands ☑ felix.beck@esa.int

Bellicoso, Davide

Liceo Galileo Galilei Italy ☑ davide.bellicoso@libero.it

Berggren, Andreas

Surrey Satellite Technology Ltd United Kingdom ☑ a.berggren@sstl.co.uk

Bleicher, Gerhard

OHB System AG Germany ⊈ gerhard.bleicher@ohb.de

Bodendieck, Frank

OHB System AG Germany ☑ frank.bodendieck@ohb.de

Brouquet, Henri

Bures, Nicolas

ITP Engines UK United Kingdom ≇ nicolas.bures@itp-engines.co.uk

Burgos, Natalia

Sener Spain ☑ natalia.burgos@sener.es

Caugant, Antoine

Airbus Defence & Space France ☑ antoine.caugant@airbus.com

Cefalo, Bianca

Sonaca Space Gmbh Germany ⅔ bianca.cefalo@sonaca-space.com

Cesari, Philippe

Airbus Defence & Space France philippe.cesari@airbus.com

Chaudrey, Muhammad Umer Ijaz

Bradford Engineering B.v. The Netherlands ☑ u.chaudrey@bradford-space.com

Checa, Elena

Esa The Netherlands ≰ Elena.Checa@esa.int

Çokgezen, Osman Özgün

Turkish Aerospace Industries Turkey ☑ ozgun.cokgezen@tai.com.tr

Coutal, Patrick

Airbus France ≇ patrick.coutal@airbus.com

Dalibot, Coraline

STFC RAL Space United Kingdom ☑ coraline.dalibot@stfc.ac.uk

Dermenakis, Stefanos

Urthecast Corp. Canada ≰ sdermenakis@urthecast.com

Dogan, Bilal Burak

Turkish Aerospace Industries, Inc. Turkey ≰ bilalburak.dogan@tai.com.tr **Dolce, Silvio** Esa The Netherlands ≰ silvio.dolce@esa.int

Dumont, Severine

Arianegroup France ☑ severine.dumont@ariane.group

Etchells, James ESA The Netherlands James.Etchells@esa.int

Fernandez Rico, German

Max Planck Institute for Solar System Research Germany ☑ fernandez@mps.mpg.de

Ferreira, Pedro Mps Germany ≰1 ferreira@mps.mpg.de

Flecht, Tobias

ESA The Netherlands ≰1 tobias.flecht@esa.int

Fluck, Emmanuelle

OHB systems Germany 翊 emmanuelle.fluck@ohb.de

Franzoso, Alberto

OHB-I Italy ≰1 afranzoso@cgspace.it

Frueholz, Helmut Esa

Gibson, Duncan

ESA/ESTEC/TEC-MTV The Netherlands ≰ duncan.gibson@esa.int

Giunta, Domenico

Esa The Netherlands ≰1 domenico.giunta@esa.int

Guillaume, Pélissier

Airbus Defence And Space France ♀ guillaume.pelissier@airbus.com

Hager, Philipp

Haugen, Tormod Bjørnetun

Kongsberg Norspace Norway ☑ tormod.bjornetun.haugen@konsberg.com

Holzwarth, Matthias ArianeGroup GmbH

Germany ⊠ matthias.holzwarth@ariane.group

HUGONNOT, Patrick

THALES ALENIA SPACE FRANCE France patrick.hugonnot@thalesaleniaspace.com

Husnain, Syed RST Aerospace Ltd United Kingdom ≰ RST-Aerospace@hotmail.co.uk

Jahn, Gerd Airbus

Germany ⊈ Gerd.Jahn@airbus.com

Jéger, Csaba

European Space Agency The Netherlands 😰 csaba.jeger@esa.int

Joos, Heiko

Airbus Germany ⊠ Heiko.Joos@airbus.com

Jurado Lozano, Pedro Jose

Moltek For Esa/estec The Netherlands ≰ Pedro.Jurado@esa.int

Kasper, Stefan

Jena-Optronik GmbH Germany 翊 stefan.kasper@jena-optronik.de

Kerenyi, Mate Swedish Institute Of Space Physics

Sweden ⊠ mate@irf.se

Kirtley, Chris

ITP Engines UK United Kingdom ≰1 chris.kirtley@itp-engines.co.uk

Klement, Jan

Tesat Spacecom Germany igan.klement@tesat.de

Kluge, Oliver

Tu Dresden Germany ☑ oliver.kluge@tu-dresden.de

Kuhlmann, Stephan-André

Ohb System Ag Germany ☑ stephan-andre.kuhlmann@ohb.de

Laine, Benoit

Laneve, Vito

Rhea System B.V. The Netherlands ☑ Vito.Laneve@esa.int

Lapensee, Stephane

ESA The Netherlands ☑ stephane.lapensee@esa.int

Lindenmaier, Peter

HPS GmbH Germany ≰ lindenmaier@hps-gmbh.com

Loarte, Sergio

ESA-ESTEC The Netherlands ≰ sergio.loarte@esa.int

Lorenzini, Fabio

Kayser Italia S.r.l. Italy ☑ f.lorenzini@kayser.it

Lucsanyi, David

Esa/estec The Netherlands ≰ david.lucsanyi@esa.int

Magner, Dominik

OHB System AG Germany ☑ dominik.magner@ohb.de

Mas, Guillaume

Cnes France ☑ guillaume.mas@cnes.fr

Monamy, Virgile

Sophia Conseil France ☑ virgile.monamy@sophiaconseil.fr

Muller, Deon

Space Advisory Company South Africa deon@scs-space.com

Münstermann, Rolf

Arianegroup Germany 翊 rolf.muenstermann@ariane.group

Netzlaf, Patricia

Ariane Group Germany ☑ Patricia.Netzlaf@ariane.group

296

Ostojic, Katherine STFC RAL Space United Kingdom ≰ katherine.ostojic@stfc.ac.uk

Pasqualetto Cassinis, Lorenzo

Italy ⊈ lorenzopasqualetto@gmail.com

Perez-Grande, Isabel Universidad Politécnica De Madrid Spain ☑ isabel.perez.grande@upm.es

Persson, Jan

ESA The Netherlands ≇ jan.persson@esa.int

Peyrou-lauga, Romain

Esa The Netherlands ☑ romain.peyrou-lauga@esa.int

Piqueras Carreño, Javier

Technical University Of Madrid Spain ☑ javier.piqueras@upm.es

Rana, Hannah

European Space Agency / University Of Oxford United Kingdom 🖈 hannah.rana@magd.ox.ac.uk

Renato, Viola

Strathclyde University United Kingdom iga viola.renato@outlook.com

Riposati, Daniela

ATG at Arianegroup Germany ☑ riposatidaniela@gmail.com

Rizzo, Davide

Ohb Italia Italy ≇ drizzo@cgspace.it

Rooijackers, Harrie

ESA/ESTEC The Netherlands ☑ Harrie.Rooijackers@esa.int

Sanitate, Marco

Sitael SpA Italy ≰1 marco.sanitate@sitael.com

Saraf, Anirudh Mukund

Spacemaster - Erasmus Joint Master In Space Science And Technology Sweden ☑ anirudh.m.saraf@gmail.com

Sardetti, Andrea

QinetiQ Space nv Belgium ☞ andrea.sardetti@gmail.com Sieber, Gunnar European Space Agency The Netherlands gunnar.sieber@esa.int

Stroom, Charles

Stremen The Netherlands Stremen.xs4all.nl

Tamkin, Luke

Airbus Defence And Space United Kingdom ☑ luke.tamkin@airbus.com

Theroude, Christophe

Airbus Defence And Space France ☑ christophe.theroude@airbus.com

Tissier, Benoît

Arianegroup France ≰ benoit.tissier@ariane.group

Tonellotto, Giulio

ESA The Netherlands ⊈ giulio.tonellotto@esa.int

Torralbo, Ignacio

IDR/UPM Spain ⊈ ignacio.torralbo@upm.es

Tosetto, Andrea

Blue Engineering Italy ≰ a.tosetto@blue-group.it

Usandizaga, Ines

DLR Germany ≰1 ines.usandizaga@dlr.de

Valentini, David

Thales Alenia Space France ☑ david.valentini@thalesaleniaspace.com

van Benthem, Roel

Netherlands Aerospace Centre NLR The Netherlands Roel.van.benthem@nlr.nl

Van Brakel, Rob

Airbus Defence And Space The Netherlands In r.van.brakel@airbusds.nl

Van Der Pas, Niels

Airbus Defence and Space Netherlands The Netherlands ☑ n.vd.pas@airbusds.nl

Vaughan, Matthew

ESA The Netherlands ☑ matthew.vaughan@esa.int

Wernitz, Ricarda DLR Germany

ricarda.wernitz@dlr.de

Winter, Daniel

IABG mbH Germany ⊠ winterd@iabg.de

Zabalza, Leire

Lidax Spain ≇ leire.zabalza@lidax.com

Zurawski, Ludovic

Airbus France ≇ ludovic.zurawski@airbus.com

Zwiebler, Alexander

TU Dresden Germany ≇ alexander.zwiebler@tu-dresden.de