Proceedings of the

28th European Space Thermal Analysis Workshop

ESA/ESTEC, Noordwijk, The Netherlands

14-15 October 2014

credits: EPSILON Ingénierie

European Space Agency Agence spatiale européenne

Abstract

This document contains the presentations of the 28th European Space Thermal Analysis Workshop held at ESA/ESTEC, Noordwijk, The Netherlands on 14–15 October 2014. The final schedule for the Workshop can be found after the table of contents. The list of participants appears as the final appendix. The other appendices consist of copies of the viewgraphs used in each presentation and any related documents.

Proceedings of previous workshops can be found at http://www.esa.int/TEC/Thermal_control under 'Workshops'.

Copyright © 2014 European Space Agency - ISSN 1022-6656

Please note that this document contains clickable hyperlinks which are shown as blue text.

Contents

Title page	1
Abstract	2
Contents	3
Programme	5

Appendices

A	Welcome and introduction	7
B	Definition of Experimental Based Thermal Parameters for a Standard Thermal Architecture of Electronic Boards and Units based on modular concept and relevant Thermal Mathematical Model Validation	15
С	LISA pathfinder Inertial Sensor Head thermal analysis in frequency domain	25
D	Fluid-selection tool	37
E	Development of a thermal control system for South Africa's next generation Earth observation satellite	51
F	GENETIK — Optimisation tool for thermal analyses performed with SYSTEMA	67
G	An overview of CHEOPS Instrument thermal design and analysis	79
Н	PEASSS — New horizons for cubesat missions	91
I	TMRT Module Software — Use on an Industrial Application	105
J	Thermal issues related to ExoMars EDLS performance	117
K	A personal look back on Thermal Software evolution within the past 36 years	127
L	General-purpose GPU Radiative Solver	141
Μ	Insight HP3 — Thermal Modelling with Thermal Desktop	161
N	Analysis Strategies For Missions Involving Comprehensive Thermal Issues	177
0	Assessment of stochastic methods for the thermal design of a telecom satellite	189
Р	Development of an automated thermal model correlation tool	201
Q	On using quasi Newton algorithms of the Broyden class for model-to-test correlation	n213
R	SYSTEMA – THERMICA 4.7.0 & THERMICALC 4.7.0	229
S	ESATAN Thermal Modelling Suite — Product Developments and Demonstration	249
Т	Tests of solids implementation in ESATAN TMS R6	277
U	Finite element model reduction for the determination of accurate conductive links and application to MTG IRS BTA	285
V	List of Participants	299

9:00	Registration
9:45	Welcome and introduction Harrie Rooijackers (ESA/ESTEC, The Netherlands)
10:00	Definition of Experimental Based Thermal Parameters for a Standard Thermal Architecture of Electronic Boards and Units based on modular concept and relevant Thermal Mathematical Model Validation
	Andrea Zamboni (Selex ES, Italy)
10:25	LISA pathfinder Inertial Sensor Head thermal analysis in frequency domain Paolo Ruzza (CGS S.p.A., Italy)
10:50	Fluid-selection tool Henk Jan van Gerner (NLR, The Netherlands)
11:15	Coffee break in the Foyer
11:45	Development of a thermal control system for South Africa's next generation Earth observation satellite
	Daniël van der Merwe (DENEL Spaceteq, South Africa)
12:10	GENETIK — Optimisation tool for thermal analyses performed with SYSTEMA Hélène Pasquier & Guillaume Mas (CNES, France)
12:35	An overview of CHEOPS Instrument thermal design and analysis Romain Peyrou-Lauga (ESA, The Netherlands) Giordano Bruno (University of Bern, Switzerland)
13:00	Lunch in the ESTEC Restaurant
14:00	PEASSS — New horizons for cubesat missions Luca Celotti & Riccardo Nadalini (Active Space Technologies GmbH, Germany)
14:25	TMRT Module Software — Use on an Industrial Application Michèle Ferrier & David Valentini (Thales Alenia Space, France)
14:50	Thermal issues related to ExoMars EDLS performance Emilie Boulier & Grégory Pinaud & Patrick Bugnon (Airbus Defence & Space, France)
15:15	A personal look back on Thermal Software evolution within the past 36 years Harold Rathjen (HRC, Germany)
15:45	Coffee break in the Foyer
16:15	General-purpose GPU Radiative Solver Andrea Tosetto & Marco Giardino & Matteo Gorlani (Blue Engineering & Design, Italy)
16:40	Insight HP3 — Thermal Modelling with Thermal Desktop Asli Gencosmanoglu & Luca Celotti & Riccardo Nadalini (Active Space Technologies GmbH, Germany)
17:05	Analysis Strategies For Missions Involving Comprehensive Thermal Issues Nicolas Liquière (EPSILON, France)
17:30	Social Gathering in the Foyer
19:30	Dinner in Iets Anders

Programme Day 2

- 9:00 Assessment of stochastic methods for the thermal design of a telecom satellite Nicolas Donadey (AKKA Technology, France) Jean-Paul Dudon & Patrick Connil & Patrick Hugonnot (Thales, France)
 9:25 Development of an automated thermal model correlation tool Martin Trinoga (Airbus Defence and Space, Germany)
 9:50 On using quasi Newton algorithms of the Broyden class for model-to-test correlation Jan Klement (Tesat-Spacecom GmbH & Co. KG, Germany)
 10:15 SYSTEMA – THERMICA 4.7.0 & THERMICALC 4.7.0 Timothée Soriano & Rose Nerriere (Astrium SAS, France)
 11:00 Coffee break in the Foyer
 11:25 ESATAN Thermal Modelling Suite — Product Developments and Demonstration Chris Kirtley & Nicolas Bures (ITP Engines UK Ltd, United Kingdom)
 12:10 Tests of solids implementation in ESATAN TMS R6
- Olivier Frapsauce & Dominique Fraioli (Airbus DS Les Mureaux, France)
- 12:35 Finite element model reduction for the determination of accurate conductive links and application to MTG IRS BTA

Lionel Jacques (Space Structures and Systems Laboratory, University of Liège & Centre Spatial de Liège, Belgium) Luc Masset (Space Structures and Systems Laboratory, University of Liège, Belgium) Tanguy Thibert & Pierre Jamotton & Coraline Dalibot (Centre Spatial de Liège, Belgium) Gaetan Kerschen (Space Structures and Systems Laboratory, University of Liège, Belgium)

13:00 Closure

13:00 Lunch in the ESTEC Restaurant

Appendix A

Welcome and introduction

Harrie Rooijackers (ESA/ESTEC, The Netherlands)

- To provide a forum for contact between end users and software developers
- To present developments on thermal engineering analysis tools and to solicit feedback
- To present new methodologies, standardisation activities, etc.

28th European Space Thermal Analysis Workshop

2/11

European Space Agency

• Workshop Proceedings will be supplied to participants afterwards, on the Web.

28th European Space Thermal Analysis Workshop

European Space Agency

4/11

ICES	
 The 45th International Conference on Environmental Systems (ICES) will be held 12-16 July, 2015, Bellevue, Washington, USA. Deadline for submitting abstracts: 3 November, 2014 Abstracts must include paper title, author(s) name(s), mailing and e-mail addresses, phone and fax numbers Abstracts may be submitted online at www.dents.ttu.edu/ceweb/ices 	
European Space Thermal Analysis Workshop 9/11	
Workshop	
Next year: 29th workshop, 3-4 November 2015 Current workshop:	

20 very interesting presentations covering:

- Range of general applications
- New tools
- Existing thermal tools
 - Enhancements
 - Applications
 - User experiences

28th European Space Thermal Analysis Workshop

10/11

European Space Agency

Appendix B

Definition of Experimental Based Thermal Parameters for a Standard Thermal Architecture of Electronic Boards and Units based on modular concept and relevant Thermal Mathematical Model Validation

> Andrea Zamboni (Selex ES, Italy)

Abstract

The thermal design and development of Spacecraft, Sub-Systems or Equipments involve the establishment of a Thermal Mathematical Model (TMM), which shall be validated and calibrated by means of dedicated Thermal Survey test campaign; the thermal model calibration is then foreseen when the first representative hardware is available and typically this occurs in a project phase where the thermal design reached a certain maturity and some changes, if any, may have not negligible impact in term of schedule and cost. On the other hand, the space market is pushing for reducing schedule and typically the experimental activities verification is to be substituted with analysis whenever feasible. Defining standard thermal solution according to "re-use" and "modularity" philosophy will reduce the experimental activities and relevant risks and improve reliability of thermal prediction.

With the aid of Thermal Concept Design Tool (TCDT) and ESATAN, thermal analyses and relevant dedicated experimental test campaign have been carried out on a Standard PCB Assembly, designed for a modular concept Electronic Unit architecture

The main results obtained where

- Calibration of analysis parameter as contact resistance and PCB conductance with the aid of dedicated thermal vacuum test
- Definition of a standard PCB layout and architecture
- Issue of a (reduced) thermal model to be used for what-if analysis and for reference for future projects
- Definition of experimental based standard parameters for Thermal Mathematical Model at Board Assembly and Equipment level, reducing the effort of dedicated thermal survey and improving reliability

Selex ES S.p.A.

Definition of Experimental Based Thermal Parameters for a Standard Thermal Architecture of Electronic Boards and Units based on modular concept and relevant Thermal Mathematical Model Validation

20

12

Issue of a (reduced) thermal models for different PCB board type (DC DC Converter, Control Board, Data Interface Board) to be used for what-if analysis and for reference for future projects

Appendix C

LISA pathfinder Inertial Sensor Head thermal analysis in frequency domain

Paolo Ruzza (CGS S.p.A., Italy)

Abstract

LISA Pathfinder is the precursor of the ESA/NASA mission LISA (Laser Interferometer Space Antenna); it aims at demonstrating the feasibility of all the challenging key technologies needed by the operational mission.

CGS is responsible of the Thermal Design and Analysis of LISA Pathfinder ISH (Inertial Sensor Head). The main goal of the ISH TCS, as a part of the overall instrument TCS, is to damp the thermal disturbances coming from outside (i.e. external environment, rest of the satellite); the system performance requirements are expressed in terms of frequency-dependent allowable noise, inside the detector bandwidth (1 mHz - 30 mHz); for this reason most of the thermal analysis are not performed in the usual time domain, but in the frequency domain.

Main assumption of this approach shall be presented and the results compared with the standard time domain results and with test results, used to validate the thermal model. Finally the advantages of this method in terms of computational time and post-process capability shall also be presented.

Paolo Ruzza, 14 October 2014, ESTEC

LISA pathfinder Inertial Sensor Head thermal analysis in frequency domain

Introduction to LISA Pathfinder (1)

LISA Pathfinder will test in flight the concept of low-frequency gravitational wave detection and all the technologies for future mission LISA (ESA/NASA)

Shall be orbiting in Earth-Sun L2

Launch foreseen in 2015

 CGS S.p.A. / LISA pathfinder Inertial Sensor Head thermal analysis in frequency domain

14/10/2014

<page-header><page-header><image><section-header><section-header><image>

CHB

Introduction to LISA Pathfinder (3)

The LCA is composed by two Inertial Sensor Heads (ISH) separated by an optical bench. The whole assembly is connected to the LCA cage by means of 8 low conductance CFRP struts

The two ISH contain two test masses in a near-perfect gravitational free-fall, whose motion is controlled and measured with unprecedented accuracy

ISHs have been designed, manufactured integrated and tested at CGS

CGS S.p.A. / LISA pathfinder Inertial Sensor Head thermal analysis in frequency domain

Analysis Approach

LCA analysis (and testing) philosophy

- The LCA is a completely passive device;
- Thermal analyses have been performed at LCA level to predict the system damping capability with reference to external temperature oscillation;
- Performance requirements are expressed in terms of frequency-dependent allowable temperature noise, inside the bandwidth [1 mHz 30 mHz];
- For this reason all analyses are performed in frequency domain (via transfer function);
- This approach also lead to design and perform a dedicated test for thermal model correlation

CGS S.p.A. / LISA pathfinder Inertial Sensor Head thermal analysis in

14/10/2014

Seite

34

CGS S.p.A. / LISA pathfinder Inertial Sensor Head thermal analysis in frequency domain

0.0011

8

0.00052

8

TRP

OW2

0.0005

6.9

CHB

Appendix D

Fluid-selection tool

Henk Jan van Gerner (NLR, The Netherlands)

Abstract

Fluid selection is one of the first and most important steps for the design of a thermal control system. The usual approach to fluid selection is to manually evaluate many different fluids. However, this is a very time-consuming process, since the number of fluids to choose from is very large, and the best fluid strongly depends on the application and temperature range. Furthermore, a potentially suitable fluid can be overlooked when fluids are manually selected. For these reasons, NLR developed a systematic, automated, fluid-selection tool. This fluid selection tool is implemented in Matlab, and it uses a figure of Merit to select the most suitable fluids from the REFPROP database. In this presentation, the use of the fluid selection tool is demonstrated for 4 different applications: Heat Pipe, Loop Heat Pipe, Two-phase mechanically pumped loop, and a heat pump. For example, it is explained why CO₂ is used in the thermal control system of AMS02 (which was launched with the space shuttle in May 2011 and subsequently mounted on the International Space Station) and why isopentane is selected for an ESA Heat Pump application.

With the fluid selection tool, fluids can be selected which would have been overlooked without the use of the figure of Merit. Furthermore, the tool offers a large saving in ccosts and time since the tedious process of finding and analyzing possibly suitable fluids can now be carried out with a single push on a button.

NLR - Dedicated to innovation in aerospace

28th European Space Thermal Analysis Workshop

Introduction

- Fluid selection is one of the first and most important steps for the design of a thermal control system
- The number of fluids to choose from is very large, and the best fluid strongly depends on application and temperature range
- Usually, the approach to fluid selection is to manually evaluate many different fluids

Introduction

NLR - Dedicated to innovation in aerospace

- This is a very time-consuming process
- Furthermore, very often the wrong fluids are analyzed and 'good' fluids are missed:
 - Standard fluids often have a poor performance in space applications, because the temperature range is usually very different than for terrestrial applications
 - Fluid flammability and/or toxicity are less an issue for space applications than for terrestrial applications
- Because of these reasons, NLR developed a systematic, automated, fluid-selection tool

Introduction • The fluid selection uses the 'figure of Merit' • In this presentation, the use of the figure of Merit is demonstrated for 4 different applications Heat pipe • Loop Heat Pipe/Capillary Pumped Loop • Two-phase mechanically pumped loop Heat pump

Heat Pipes

- Heat Pipes are capillary driven two-phase heat transfer devices
- Can transport large amounts of thermal energy with only a small ΔT (~10000 better than copper)
- Usually water or ammonia as working fluid

• Figure of Merit based on low pressure drop is $M=1/\Delta p_{\text{fluid dependent part}}$

NLR - Dedicated to innovation in aerospace

45

17

Heat pump

• A heat pump uses a compressor to raise the radiator temperature above the payload temperature

- This significantly increases the heat rejection capacity of the radiators
- Traditional compressors are too heavy and cause too much vibrations
- For this reason, a heat pump with a lightweight, low-vibration, high-speed (200,000 RPM) compressor has been developed in an ESA project
- The efficiency of a heat pump can be expressed with the Coefficient of Performance: COP=P/w_{compressor}
- So for a heat pump, the figure of Merit can be based on the COP $\rightarrow M \propto$ COP

19

Heat pump

- The fluid selection tool shows that R21, R11, R141b, and R123 have the highest COP
- However, these fluids are banned or being phased-out according to the Montreal protocol
- The next best fluids are R245fa, R245ca, and isopentane (R601a)
- A detailed compressor analysis showed that the highest efficiency is obtained with isopentane, so this refrigerant is chosen for the heat pump application

NLR - Dedicated to innovation in aerospace

47

Appendix E

Development of a thermal control system for South Africa's next generation Earth observation satellite

Daniël van der Merwe (DENEL Spaceteq, South Africa)

Abstract

This presentation gives an overview of the work done so far in developing a thermal control system for South Africa's next generation Earth observation satellite. Correlated thermal models of critical major components were developed based on lessons learned from SumbandilaSAT (South Africa's first national satellite). These include amongst others an electronic housing unit and a typical solar panel. In addition, the thermo-optical properties of commonly used coatings and tapes were also measured. The performance of the proposed thermal control system was evaluated using the NXTM Space Systems software. During the evaluation different satellite orientation modes were considered, as well as different mission scenarios. The results show that the suggested thermal control system creates a relatively low, uniform temperature inside the satellite.

1. INTRODUCTION

Scope

- Concept development
- Lessons-learned SumbandilaSAT, van der Merwe¹

Thermal design challenges

- Batteries: 15-30 °C, uniform temperature field
- Data transmitters: 110 W heat dissipation per transmitter
- CCDs: low operating temperature
- Optical bench: uniform temperature field
- Solar panels: 0-80 °C
- EHU: 0-40 °C

N Denel Spaceteq Your African Aerospace Ally 2 of 25

SPACETEQ

2. ORBITAL HEAT LOAD

Orbit

- Circular Sun-synchronous orbit, 700 km, LTAN 22:30
- Orbit inclination 98.15 °, period 98.6 min

Orbital radiation, Gilmore²

- Solar constant: 1367 W/m²
- Earth IR emission: -18 ° C, 240 W/m²
- Albedo: 30% of incident solar radiative energy, diffuse reflection
- Deep space: 3 K

Beta angle, Chobotov³

- Minimum angle between orbit plane and solar vector
- $\beta = \sin^{-1}(\hat{s} \cdot \hat{n}) = \sin^{-1}[\cos(\delta)\sin(i)\sin(\Omega_{AN} \Omega_{TS}) + \sin(\delta)\cos(i)]$

3.	INTER	NAL HE	EAT LOA	D
	MC	Coasting, W	Imaging, W	
	HR CCD		6.6	
	HR EHU		5.0	
	MR CCD		8.4	
	MR EHU		5.0	
	ASF CCD		8.4	
	ASF EHU		5.0	
	ASA CCD		8.4	
	ASA EHU		5.0	
	SWIR CCD		8.4	
	SWIR EHU		5.0	
	X-DT EHU		110 each	
	CTR-VU EHU	4.0 cont.	4.0 cont. & 20.0	
	CTR-S EHU	4.0 cont.	4.0 cont. & 20.0	
	RW (each)	5.0 cont.	5.0 cont.	
	HK EHU	15.0 cont.	15.0 cont.	
11	DRS out		5.0 transmitting	
	DRS in		7.0 imaging	
DENEL			9	
			Donal Spacetor Veur A	
7 of 25			Dener spaceted Your A	incan Aerospace Ally

4. MISSION SCENARIOS

Mission phases

- Orbit: 14.6 revolution per day
- Coasting: Orbit 1 10
- Imaging: Orbit 11 12
- Cyclic stability: 10 orbits

Satellite orientation modes

- Least drag (LD)
- Sun-following (SF)
- Imaging (IM)

Coasting phase

- Sun-following (SF)
- **D E N E L** 8 of 25

SPACETEQ

Denel Spaceteq Your African Aerospace Ally

5. laterials	PROPOS	ED TCS
Component	Coating	Material
Solar panels	Graphite epoxy, $\epsilon = 0.85$, $a = 0.93$	Al honeycomb, bare CF skins
Optical baffles	Black Z306, $\epsilon = 0.87, a = 0.95$	CF epoxy (25% vol.)
Rest of satellite	Alodine [®] , $\epsilon = 0.15, a = 0.08$	Al 6082 - T6
ENEL		SPACE
		Denel Spaceteq Your African Aerosp

7. PERFORMANCE OF TCS

X-DTs

- Coasting: low nominal temperature mainly due to absence of internal heat loads; -10.3 °C to -7.3 °C
- Imaging: Temperature jump 40 °C due to 110 W internal heat load; -9.9 °C to 45.2 °C

Optics

- CCDs not modelled hence EHU response is used
- Coasting: Don't reached cyclic stability
- Imaging: Temperature jump less than 7.5 °C

Solar panels

- Coasting: side -45 °C to 68 °C; main -30 °C to 121 °C
- Imaging: side -50°C to 78°C; main -38 °C to 133 °C

DENEL	SPACETEQ
16 of 25	Denel Spaceteq Your African Aerospace Ally

8. EXPERIMENTAL WORK

EHU

- EHUs modelled as thin-walled boxes
- Thermal model comparison: thermal vacuum test

8. EXPERIMENTAL WORK

Solar panels

- Effective thermal conductivity models: Swann and Pittman⁵, Gilmore, Daryabeigi⁶ (modified Swann and Pittman model: glued interfaces and CF sheets)
- Expanding effective model to an equivalent continuum (k, ρ , c_p) similar to Liu⁷: 3D, orthotropic, transient conduction
- Thermal model still under investigation results look promising

<section-header><section-header><list-item><list-item><list-item><list-item>

9. Conclusion

TCS

- Relatively low uniform temperature inside the satellite
- Future work: update thermal model and adjust TCS where needed

Experimental work

- EHU thermal model shows good comparisons with measured data
- Similarly for the SP thermal model
- Thermo-optical test results shows good comparison with published data
- Future work: Complete SP thermal model, expand and refine thermo-optical databases

Appendix F

GENETIK Optimisation tool for thermal analyses performed with SYSTEMA

Hélène Pasquier Guillaume Mas (CNES, France)

Abstract

GENETIK is a software developed by CNES to facilitate the detection of thermal sizing cases. It is based on genetic algorithm to explorate solution space and to determine the worst environmental conditions (solar, albedo and earth fluxes).

With some improvements on thermal study management in SYSTEMA V4, and particularly the possibility to perform parametric analyses, the coupling of optimization tool to SYSTEMA is made possible.

The objectives of the presentation are to:

- Present GENETIK functionalities
- Develop the possibilities of this optimisation tool

Appendix G

An overview of CHEOPS Instrument thermal design and analysis

Romain Peyrou-Lauga (ESA, The Netherlands)

Giordano Bruno (University of Bern, Switzerland)

Abstract

CHEOPS (CHaracterizing ExoPlanet Satellite) is the first ESA S-class mission and is dedicated to search for planet transits by means of ultrahigh precision photometry on bright stars already known to host planets. The University of Bern is in charge of the CHEOPS instrument, which is a single aperture, high accuracy photometer operating between 0.4 and 1.1 micron. The focal plane detector consists of a single CCD operated at -40 °C and requires a thermal stability better than 10 mK. The presentation will provide an overview of the thermal design and of the thermal analysis of the instrument.

Giordano Bruno (University of Bern) Romain Peyrou-Lauga (ESA)

Thermal analysis workshop – ESTEC – 14-15 Oct. 2014

CHEOPS Cesa

CHEOPS Cesa

CHEOPS MISSION

- CHEOPS is the first ESA's Science Programme of class S (Small mission).
- The purpose of the mission is to characterise already known exoplanets: it will measure the bulk density of «super-Earth»- and «Neptune»-mass planets, for future in-depth characterisation studies of exoplanets in these mass ranges.
- A sun synchronous LEO orbit has been chosen with LTAN 6:00 am and altitude from 620 to 800 km.
- The Satellite Attitudes/pointings have been defined on the basis of the allowed observation field, which in turn, must respect the Earth stray light exclusion angles.

CHEOPS Cesa **OVERVIEW OF CHEOPS ORBIT (1/2)** CHEOPS instrument must be able to CHEOPSPOI point any star up to 60° away from the anti-Sun direction (combined azimuth / elevation angle) A rotation around the Telescope axis is possible (and used) to avoid (or minimize) the radiators field of view with the Earth. As a result, the Instrument is most of the time in the shade of the Sunshield and a constant spin allows the radiators never to face the Earth (for low off-axis pointings) BUT... for Instrument large off-axis pointings, radiators have an inevitable field of view with the Earth once per orbit – always above one of the Polar regions. Besides, the Telescope has also a large view factor with the Earth once per orbit. Thermal analysis workshop – ESTEC – 14-15 Oct. 2014

- The recent thermal analysis activities led a specific reflection about the environment hypothesis in the pecular case of CHEOPS combined orbit/ pointings.
- For Instrument large off-axis pointings, radiators and telescope have an inevitable field of view with the Earth once per orbit always above one of the Polar regions.

Appendix H

PEASSS New horizons for cubesat missions

Luca Celotti Riccardo Nadalini (Active Space Technologies GmbH, Germany)

Abstract

A cubesat is a type of miniaturized satellite for space research with external volume starting from 10x10x10cm3 (1U) and multiples of it (2U, 3U...). The cubesat platform is well-known to the academic researchers, small space companies and space amateurs, because of:

- standardized parts and interfaces;
- off-The-Shelf Components usage;
- "group" launches.

For these reasons, universities, small companies and space-enthusiasts have been the main users of this platform in the recent years. On the other hand, cubesat losses because of internal failures, not detailed design and analysis have been common.

PEASSS is a 3U cubsat under development as part of a FP7 European Commission project involving Active Space Technologies GmbH, TNO and ISIS (Netherlands), SONACA (Belgium), Technion and NSL (Israel). The main objective of the project is to develop, manufacture, test and qualify "smart structures" which combine composite panels, piezoelectric materials, and next generation sensors, for autonomously improved pointing accuracy and power generation in space. The system components include new nano satellite electronics, a piezo power generation system, a piezo actuated smart structure and a fiber-optic sensor and interrogator system.

The approach chosen for the design of PEASSS allows to combine the advantages of the cubesat platform to the complexity of the mission (technological demonstrator), achieving the mission success, technologies TRL step-up, while reducing the risk of the mission. This objective is achieved by increasing the level of analysis/verification of the whole satellite and the payloads/subsystems "like a non-cubesat mission", including:

- detailed thermal modelling with orbital and satellite life-time cases analysis;
- design of heaters and other active/passive thermal control solution;
- acceptance on breadboard and qualification on flight model for vibration tests;
- thermal vacuum functional tests;
- correlation and automatized correlation models;
- qualification thermal vacuum tests at payload level;
- acceptance thermal vacuum tests at satellite level.

The whole satellite thermal design and analysis are performed in Esatan-TMS and using AST's internally developed "model runner" and results "post-process" module.

Outline

- Introduction cubesat world and PEASSS in detail
- PEASSS new concept in the cubesat standard missions and approach
- Detailed thermal modelling and architecture design
- Vibration modelling and testing
- Thermal vacuum functional tests
- Thermal correlation and automatized correlation models
- Experience gained and next steps

(Cactivespace technologies

B (Y

CubeSatShop.com

Cactivespace technologies

Introduction - Cubesats

A cubesat is a type of miniaturized satellite for space research with external volume starting from 10x10x10cm³ (1U) and multiples of it (2U, 3U...).

The cubesat platform is well-known to the academic researchers, small space companies and space amateurs, because of:

- standardized parts and interfaces;
- off-The-Shelf Components usage;
- "group" launches.

For these reasons, universities, small companies and spaceenthusiasts have been the main users of this platform in the recent years. On the other hand, cubesat losses because of internal failures, not detailed design and analysis have been common.

Introduction - PEASSS

PEASSS is a 3U cubsat under development as part of a FP7 European Commission project involving Active Space Technologies GmbH, TNO and ISIS (Netherlands), SONACA (Belgium), Technion and NSL (Israel).

The main objective of the project is to develop, manufacture, test and qualify "smart structures" which combine composite panels, piezoelectric materials, and next generation sensors, for autonomously improved pointing accuracy and power generation in space. The system components include new nano satellite electronics, a piezo power generation system, a piezo actuated smart structure and a fiber-optic sensor and interrogator system.

The approach chosen for the design of PEASSS allows to combine the advantages of the cubesat platform to the complexity of the mission (technological demonstrator), achieving the mission success, technologies TRL step-up, while reducing the risk of the mission. This objective is achieved by increasing the level of analysis/verification of the whole satellite and the payloads/subsystems "like a non-cubesat mission":

- Orbit modelling and trade-off
- Satellite attitude study
- Thermal cases evaluation
- Detailed thermal modelling and analysis (ESATAN-TMS) with worst-cases approach
- Detailed thermal design (taking into account the constraints of the mission)
- Structural analysis, vibration test for EM before acceptance for launch
- Thermal vacuum functional tests of payloads
- Thermal vacuum tests of payloads and system

Detailed thermal modelling

Orbit and cases trade-off:

- Hot and cold cases evaluation taking into account the possible orbits PEASSS can have (depending on the launch).
- Two orbits have been considered:
 - 51° inclination, year period with the longest and the shortest eclipse duration (right ascension 0° and 90°)
 - SSO with 97.8° inclination, also with two sub-cases (longest and the shortest eclipse duration)
- Both orbits have altitude of 600km.

Cactivespace technologies

Gactivespace

97

Architecture design - initial approach

- Passive thermal control preferred:
 - Internal and external coatings
 - Mechanical interfaces through the structure and the external panels modelled (insulators if needed)
 - Contrasting requirements form system (components within the temperature limits) and some of the payloads (power generator: maximize the deltaT on the payload panel -also satellite panel and so impacting on it-)

Active thermal control elements:

- Heaters on the battery cells (4 heaters, each placed on different cell)
- Heater on the Interrogator housing in order to increase the temperature of the payload during operations
- TEC component inside the LightSource component to provide stable temperatures during the component's operations

Thermal vacuum functional tests

In order to investigate the thermal behaviour of the interrogator, a thermal vacuum test has been performed in AST facilities.

The objectives of the test were:

- to collect data for thermal model correlation and reduce the thermal modelling uncertainties
- to verify whether the provisions for cooling and heating are sufficient and in correspondence with the simulations
- to check whether the interrogator perform within specifications over the specified temperature range.

Testing took place in AST facilities in Berlin, Germany.

16

(Cactivespace

Experience gained and next steps

Conclusions:

- the cubesat world is a promising one also in terms of detailed modelling and analysis
- cubesat missions are continuously growing in popularity and complexity
- "bigger" satellites thermal design approach can fit to cubesat missions increasing the mission success
- detailed analysis and tests performed for PEASSS allowed to implement changes in also in the design to assure better performances and mission success

Next steps:

• Implementing a qualification-acceptance path for the payloads and the whole satellite, both for thermal and structural aspects

Thank you for the attention!			
For further inform	nation, please visit our website		
www.activespace	etech.com		
	Luca Celotti		
	luca.celotti@activespacetech.eu		
	Tel: +49 (0) 30 6392 6090		
	Fax: +49 (0) 30 201 632 829		
	Carl-Scheele Straße 14	(@activespace	
	12489 Berlin, Germany	technologies	22

(Cactivespace

21

Appendix I

TMRT Module Software Use on an Industrial Application

Michèle Ferrier David Valentini (Thales Alenia Space, France)

Abstract

Reduction thermal model activity is a recurrent activity on a majority of space program. The reduction is usually done manually. This activity can also take a lot of time if the DTMM (Detailed Thermal Mathematical Model) to be reduced has a lot of nodes and thermal couplings. Moreover, the fact that the reduction is done manually increases the error risk on the RTMM (Reduced Thermal Mathematical Model) and so increases therefore the difficulty of the correlation activity between DTMM and RTMM. In order to optimize reduction activity, an initial module software (so called TMRT, Thermal Model Reduction Tool) has been developed by Airbus Defence & Space (ADS) and Thales Alenia Space (TAS) under ESA contract. This module has been afterward implemented in TAS Thermal Internal Software (E-THERM) and several evolutions have been done under TAS self-funding, in order to implement typical ESATAN-TMS parameters and functions and so to permit the reduction of an ESATAN-TMS DTMM. The objectives of the presentation are to :

- describe briefly the TMRT Module of E-THERM
- define limits and constraints of TMRT module for an ESATAN-TMS DTMM reduction
- present the reduction results obtained on an industrial application.

PARAMETERS & FONCTIONINITIAL VERSION OF TMRTDEVELOPED VERSION (TAS SELF-FUNDING)Node LabelYESYESNode Initial Temperature (T)YESYESNode Area (A)YESYESNode Capacitance (C)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableNode type (D, B, X)YES (except X type)YESNode type (D, B, X)YES (except X type)YES (numerical value and time dependency value)Radiative Couplings (GR)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableConductive Couplings (GL)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableConductive Couplings (GL)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableConductive Couplings (GL)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableC) dependency variableNOYES (for instance : tempe rature dependency of thermal conductiveConstant External fluxes DE Earth / QA Albedo /QS SolarNOYES (under conditions : a specific ESATAN-TMS format shall be a THRMST function / QR)Fortran boucle "FOR" for nodes & conductors definitionNOYES	TMRT	ESATAN-TMS DTMM RECOGN	IZED PARAMETERS & FUNCTIONS			
Node LabelYESYESNode Initial Temperature (T)YESYESNode Area (A)YESYESNode Capacitance (C)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableNode Capacitance (C)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableNode type (D, B, X)YES (except X type)YESInternal dissipation (QI)NOYES (numerical value and time dependency value)Radiative Couplings (GR)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableConductive Couplings (GL)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableConstant External fluxes DE Earth / QA Albedo /QS SolarNOYES (under conditions : a specific ESATAN-TMS format shall be a Thermostatic Regulation Lines THRMST function / QR)NONOYES (under conditions : a specific ESATAN-TMS format shall be a tornat shall be a tornat boucle "FOR" for nodes & conductors definitionNO	PARAMETERS & FONCTION	INITIAL VERSION OF TMRT	DEVELOPED VERSION (TAS SELF-FUNDING)			
Idede Initial Temperature (T)YESYESIdede Area (A)YESYESIdede Area (A)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableIdede Capacitance (C)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableIdede type (D, B, X)YES (except X type)YESInternal dissipation (QI)NOYES (numerical value and time dependency value)Itadiative Couplings (GR)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableConductive Couplings (GL)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableCi (C) dependency variableNOYES (for instance : tempe rature dependency of thermal conductiveConstant External fluxes DE Earth / QA Albedo /QS SolarNOYES (under conditions : a specific ESATAN-TMS format shall be a THRMST function / QR)Ci otran boucle "FOR" for nodes & onductors definitionNOYES	lode Label	YES	YES			
ode Area (A)YESYESode Capacitance (C)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableode type (D, B, X)YES (except X type)YESnternal dissipation (Ql)NOYES (numerical value and time dependency value)adiative Couplings (GR)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableonductive Couplings (GL)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variables(°C) dependency variableNOYES (for instance : tempe rature dependency of thermal conductiveonstant External fluxes IE Earth / QA Albedo /QS SolarNOYES (under conditions : a specific ESATAN-TMS format shall be and thermostatic Regulation Lines THRMST function / QR)NONOYES (under conditions : a specific ESATAN-TMS format shall be and onductors definitionNOortran boucle "FOR" for nodes & onductors definitionNOYES	ode Initial Temperature (T)	YES	YES			
ode Capacitance (C)YES (limited to numerical value)YES (numerical value and calculated value with Esatan * variable to de type (D, B, X)YES (except X type)YESnternal dissipation (QI)NOYES (numerical value and time dependency value)adiative Couplings (GR)YES (limited to numerical value)YES (numerical value and calculated value with Esatan * variable to conductive Couplings (GL)onductive Couplings (GL)YES (limited to numerical value)YES (numerical value and calculated value with Esatan * variable to conductive Couplings (GL)onstant External fluxes IE Earth / QA Albedo /QS SolarNOYES (for instance : tempe rature dependency of thermal conductive to softant External fluxes IE Earth / QA Albedo /QS SolarNOhermostatic Regulation Lines THRMST function / QR)NOYES (under conditions : a specific ESATAN-TMS format shall be a to softant shoule "FOR" for nodes & onductors definitionNOVESNOYES	ode Area (A)	YES	YES			
Index type (D, B, X)YES (except X type)YESInternal dissipation (QI)NOYES (numerical value and time dependency value)Itadiative Couplings (GR)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableIonductive Couplings (GL)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variable(C) dependency variableNOYES (for instance : tempe rature dependency of thermal conductiveIonstant External fluxes IE Earth / QA Albedo /QS SolarNOYES (under conditions : a specific ESATAN-TMS format shall be a VES (under conditions : a specific ESATAN-TMS format shall be a ontran boucle "FOR" for nodes & onductors definitionNOIonstant External fluxes IE Earth / QA Albedo /QS SolarNOYES (under conditions : a specific ESATAN-TMS format shall be a ontran boucle "FOR" for nodes & onductors definition	ode Capacitance (C)	YES (limited to numerical value)	YES (numerical value and calculated value with Esatan « variables »)			
Internal dissipation (QI)NOYES (numerical value and time dependency value)Iadiative Couplings (GR)YES (limited to numerical value)YES (numerical value and calculated value with Esatan * variableiconductive Couplings (GL)YES (limited to numerical value)YES (numerical value and calculated value with Esatan * variable(C) dependency variableNOYES (for instance : tempe rature dependency of thermal conductive(C) dependency variableNOYES (for instance : tempe rature dependency of thermal conductive(c) dependency variableNOYES (for instance : tempe rature dependency of thermal conductive(c) dependency variableNOYES (for instance : tempe rature dependency of thermal conductive(c) dependency variableNOYES (for instance : tempe rature dependency of thermal conductive(c) dependency External fluxes (E Earth / QA Albedo /QS SolarNOYES (under conditions : a specific ESATAN-TMS format shall be ahermostatic Regulation Lines THRMST function / QR)NOYES (under conditions : a specific ESATAN-TMS format shall be a onductors definitionortran boucle "FOR" for nodes & onductors definitionNOYES	lode type (D, B, X)	YES (except X type)	YES			
tadiative Couplings (GR)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variableconductive Couplings (GL)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variable(C) dependency variableNOYES (for instance : tempe rature dependency of thermal conductive(C) dependency variableNOYES (for instance : tempe rature dependency of thermal conductive(C) dependency variableNOYES(T) A Albedo /QS SolarNOYESIme Dependency External fluxes (E Earth / QA Albedo /QS SolarNONOYES (under conditions : a specific ESATAN-TMS format shall be and PHRMST function / QR)NOYES (under conditions : a specific ESATAN-TMS format shall be and Ortran boucle "FOR" for nodes & onductors definitionNOYES	nternal dissipation (QI)	NO	YES (numerical value and time dependency value)			
conductive Couplings (GL)YES (limited to numerical value)YES (numerical value and calculated value with Esatan « variable: (C) dependency variable(C) dependency variableNOYES (for instance : tempe rature dependency of thermal conductive onstant External fluxes tE Earth / QA Albedo /QS SolarNOime Dependency External fluxes tE Earth / QA Albedo /QS SolarNOYES (under conditions : a specific ESATAN-TMS format shall be a thermostatic Regulation Lines THRMST function / QR)NOYES (under conditions : a specific ESATAN-TMS format shall be a onductors definition	adiative Couplings (GR)	YES (limited to numerical value)	YES (numerical value and calculated value with Esatan « variables »			
(°C) dependency variableNOYES (for instance : tempe rature dependency of thermal conductive version instance : tempe rature dependency of thermal conductive VESconstant External fluxes De Earth / QA Albedo /QS SolarNOYESime Dependency External fluxes DE Earth / QA Albedo /QS SolarNOYES (under conditions : a specific ESATAN-TMS format shall be a VES (under conditions : a specific ESATAN-TMS format shall be a Ortran boucle "FOR" for nodes & onductors definitionNOYES (under conditions : a specific ESATAN-TMS format shall be a VES (under conditions : a specific ESATAN-TMS format shall b	conductive Couplings (GL)	YES (limited to numerical value)	YES (numerical value and calculated value with Esatan « variables »)			
Result NO YES VEE Earth / QA Albedo /QS Solar NO YES Vie Earth / QA Albedo /QS Solar NO YES (under conditions : a specific ESATAN-TMS format shall be a provide the specific ESATAN-TMS format shall be a provide the specific tesatan / QR) hermostatic Regulation Lines THRMST function / QR) NO YES (under conditions : a specific ESATAN-TMS format shall be a provide the specific tesatan-tms format shall be a provide tesatan-tms format shall be a provide tesatan-tms for	(°C) dependency variable	NO	YES (for instance : tempe rature dependency of thermal conductivity)			
Time Dependency External fluxes DE Earth / QA Albedo /QS SolarNOYES (under conditions : a specific ESATAN-TMS format shall be a YES (under conditions : a specific ESATAN-TMS format shall be a THRMST function / QR)NOYES (under conditions : a specific ESATAN-TMS format shall be a 	Constant External fluxes QE Earth / QA Albedo /QS Solar	NO	YES			
hermostatic Regulation Lines FHRMST function / QR) NO YES (under conditions : a specific ESATAN-TMS format shall be a orductors definition ortran boucle "FOR" for nodes & onductors definition NO YES	ime Dependency External fluxes E Earth / QA Albedo /QS Solar	NO	YES (under conditions : a specific ESATAN-TMS format shall be apply			
iortran boucle "FOR" for nodes & onductors definition NO YES	hermostatic Regulation Lines THRMST function / QR)	NO	YES (under conditions : a specific ESATAN-TMS format shall be apply			
	ortran boucle "FOR" for nodes & onductors definition	NO	YES			
INCLUDE Function NO YES	INCLUDE Function	NO	YES			

TMRT Constraints on ESATAN-TMS DTMM (TMRT Input) (2/2) 6 TMRT ESATAN-TMS DTMM <u>unrecognized</u> parameters & functions : Nodes label with accent Nodes coordinates (= ESATAN-TMS r5 outputs) : FX = -0.887000, FY = -0.329500, FZ = 0.244750 Convective conductors Function LOG All ESATAN-TMS functions and fortran subroutines not listed in the previous slide ESATAN-TMS DTMM Size : TMRT can't import the ESATAN-TMS DTMM when this latter is too big (typically for a thermal model with conductors number > 400 000). <u>Actual by-passing solution</u> = Conductive and radiative couplings reduction is done step by step (= creation of several DTMM as inputs for TMRT: one for instance with only conductive couplings and the other with only radiative couplings). A fusion activity shall also be done on the base of RTMM models issued from TMRT. Some restrictions exist on ESATAN-TMS DTMM input format ThalesAlenia OPEN 14th - 15th October 2014 Space

1) (4 (0)

	TMRT Reduction Constraints
-	8 On combinations of DTMM nodes:
•	 A DTMM node which has a radiative coupling with another node can't be suppressed in the reduction (= can't be a "SUPRESSED" node). DTMM "KEPT" nodes can't be renumbered in RTMM through TMRT The capacitance of a DTMM node which has the "SUPRESSED" status can't be attributed to an "AVERAGE" node of the RTMM. It can be attributed only to a "KEPT" node.
74	On generated RTMM ESATAN-TMS:
6	 Some renumbering shall be done manually (due to restriction listed hereafter) Outputs definition shall be redefined manually with RTMM nodes list. Comparison between DTMM & RTMM results shall be done through ESATAN-TMS calculation in order to validate the RTMM.
5	Some restrictions exist on TMRT reduction under ESATAN-TMS format
14th - 1	Sth October 2014 DPEN ThalesAlenia

	TMRT Industrial Application (2/8)	1
🛰 Sate	lite Reduction objectives :	10
74	RTMM nodes number < 400	
74	 Femperature objectives (Difference between reduced & detailed Me for structural nodes : ΔT(℃) < 3℃ for MLI nodes : ΔT(℃) < 10℃ 	odels):
~ (Consumption objectives(Difference between reduced & detailed Me ΔP(W) < 5% for : Global heating power consumption of Satellite Global heating power consumption of EOPL subsystem Global heating power consumption of PF+MMS subsystem ΔP(W) < 15% for line with an heating power consumption > 5W ΔP(W) < 0.5W for line with an heating power consumption > 5W 	odels):
74	Thermal cases validation number : 2	
14th - 15th Octobe	2 Safe Case	ThalesAlenia A The Compared Control Space

🛰 Re	duction Synthesis (Heating Power Consumption):	14
74	Hot Nominal Case : $\Delta P_{(DTMM/RTMM)} = -0.9 \%$ on Satellite Global heating power consumption $\Delta P_{(DTMM/RTMM)} = -0.6 \%$ on EOPL Global heating power consumption No heating power consumption on PF/MMS in hot case.	
74	Cold Safe Case : $\sim \Delta P_{(DTMM/RTMM)}$ = 0.9 % on Satellite Global heating power consumption $\sim \Delta P_{(DTMM/RTMM)}$ = 1.1 % on EOPL Global heating power consumption $\sim \Delta P_{(DTMM/RTMM)}$ = 2.8 % on PF/MMS Global heating power consumption	
$\Delta P_{(D)}$	$_{\text{TMM/RTMM}} < 5 \% \rightarrow \text{Good representativeness of heating p}$	ower consumption
		for the second
4th - 15th Oct	ober 2014	ThalesAlenia

GLOBAL SATELLITE ATC CO		N HOT NOMIN	AP (W)	A (%)	REDUCTION STATUS VS OBJECTIVES
GLOBAL SATELLITE ATC CONSUMPTION (W)	63.2	62.6	-0.6	-0.9	ОК
	CONSUM]
	DTMM	RTMM	AP (W)	Δ (%)	
DETECTION UNIT AREA	19.0	18.6	-0.4	-2.2	ок
BACK CAVITY AREA	18.6	18.7	0.1	0.5	ок
FONT CAVITY AREA	9.7	9.0	-0.7	-6.9	ОК
M2 AREA	10.0	9.9	-0.1	-0.7	ОК
M1 AREA	5.7	6.4	0.7	11.9	ОК
TOTAL	63.0	62.6	-0.4	-0.6	ок
CTA PF+MM		APTION			1
	DTMM	RTMM	ΔP (W)	Δ (%)	
PCU	0.0	0.0	0.0	/	
VPU	0.0	0.0	0.0	/	
CSFU	0.0	0.0	0.0		
CRVPTO TURK	0.2	0.0	-0.2		
TANK	0.0	0.0	0.0	',	
PF -X PANEL	0.0	0.0	0.0	1	
BATTERY	0.0	0.0	0.0	/	NU ATC CONSUMPTION
-Zinf RWs	0.0	0.0	0.0	/	
+Zinf RWs	0.0	0.0	0.0	/	
+Zsup TTC	0.0	0.0	0.0	/	
Pan - Y SMIL	0.0	0.0	0.0	',	
CSS	0.0	0.0	0.0	',	
τοτοι	0.2	0.0	-0.2		08
IOTAL (0.2	0.0	-0.2		- OK

DTMM RTMM $\Delta P (W)$ $\Delta (\%)$ LOBAL SATELLITE ATC CONSUMPTION (W) 316.8 319.8 3.0 0.5 CTA EOPL CONSUMPTION TTA EOPL CONSUMPTION DTMM RTMM $\Delta P (W)$ $\Delta (\%)$ OK Interview of the second secon	GLOBAL SATELLITE ATC	CONSUMPT	ION COLD SAF	E CASE		REDUCTION STATUS VS OBJECTIVES	
LOBAL SATELLITE ATC CONSUMPTION (W) 316.8 319.8 3.0 0.5 CTA EOPL CONSUMPTION DTMM RTMM ΔP (W) Δ (%) OK CTA EOPL CONSUMPTION CTA EOPL CONSUMPTION DTMM RTMM ΔP (W) Δ (%) Consumption CACK CAVITY AREA 70.8 0.0 0 DTMM RTMM ΔP (W) Δ (%) OK DTMM TION CTA PF+MMS CONSUMPTION CTA PF+MMS CONSUMPTION CTA PF+MMS CONSUMPTION CTA PF+MMS CONSUMPTION CU 1.9 4.1 2.2 / OK OK <td colspan<="" th=""><th></th><th>DTMM</th><th>RTMM</th><th>ΔP (W)</th><th>Δ (%)</th><th></th></td>	<th></th> <th>DTMM</th> <th>RTMM</th> <th>ΔP (W)</th> <th>Δ (%)</th> <th></th>		DTMM	RTMM	ΔP (W)	Δ (%)	
CTA EOPL CONSUMPTION DTMM RTMM $\Delta P(W)$ $\Delta (\%)$ ETECTION UNIT AREA 35.8 70.8 0.0 0 ACK CAVITY AREA 35.8 34.8 -1.1 -3 DNT GAVITY AREA 17.4 16.0 -1.3 -8 ZAREA 14.9 15.1 0.2 1 I AREA 10.4 11.0 0.6 6 DTAL 109.3 147.6 -1.6 -1.1 CTA PF+MMS CONSUMPTION CU 1.9 4.1 2.2 / DU 0.0 0.0 0.0 / OK SUMPTION CU 1.9 4.1 2.2 / DU 0.0 0.0 0.0 / OK SUPU 0.0 0.0 0.0 / OK SUPU 0.0 0.1 1.1 / OK SUPUT (*) 84.6 80.5 -4.1 <th>GLOBAL SATELLITE ATC CONSUMPTION (W)</th> <th>316.8</th> <th>319.8</th> <th>3.0</th> <th>0.9</th> <th>ок</th>	GLOBAL SATELLITE ATC CONSUMPTION (W)	316.8	319.8	3.0	0.9	ок	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CTA EOP	L CONSUMI	PTION				
CTA $PF+MMS$ $O.0$ 0 $ACK CAVITY AREA$ 35.8 34.8 -1.1 -3 $DNT CAVITY AREA$ 17.4 16.0 -1.3 -8 $DNT CAVITY AREA$ 14.9 15.1 0.2 1 $12 AREA$ 16.4 11.0 0.6 6 $OTAL$ 19.3 147.6 -1.6 -1.1 OK CTA PF+MMS CONSUMENTION CTA PF+MMS CONSUMENTION CTA PF+MMS CONSUMENTION COMM RTMM $\Delta P(W) \Delta (\%) OK CTA PF+MMS CONSUMENTION CONSUMENTION CU DTM RTMM \Delta P(W) \Delta (\%) OK CONSUMENTION CONSUMENTION OK OK OK OK OK OK OK OK $		DTMM	RTMM	ΔP (W)	Δ (%)		
ACK CAVITY AREA 35.8 34.8 -1.1 -3 DNT CAVITY AREA 17.4 16.0 -1.3 -8 DNT CAVITY AREA 17.4 16.0 -1.3 -8 2 AREA 14.9 15.1 0.2 1 11 AREA 10.4 11.0 0.6 6 DTAL 149.3 147.6 -1.6 -1.1 CTA PF+MMS CONSUMETION CU DTMM RTMM ΔP (W) Δ(%) CU 1.9 4.1 2.2 / OK 0.0 0.0 0.0 / OK SUPTON CU 0.0 0.0 0.0 / / OK SUPTON 0.0 0.0 0.0 / / OK SUP 0.0 0.0 0.0 / / OK SUP 3.4 49.3 6.0 14 OK OK </td <td>DETECTION UNIT AREA</td> <td>70.8</td> <td>70.8</td> <td>0.0</td> <td>0</td> <td>ОК</td>	DETECTION UNIT AREA	70.8	70.8	0.0	0	ОК	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BACK CAVITY AREA	35.8	34.8	-1.1	-3	ОК	
2 AREA 14.9 15.1 0.2 1 $1 AREA$ 10.4 11.0 0.6 6 $0 TAL$ 149.3 147.6 -1.6 -1.1 CTA PF+MMS CONSUMPTION CTA PF+MMS CONSUMPTION	FONT CAVITY AREA	17.4	16.0	-1.3	-8	ОК	
I1 AREA 10.4 11.0 0.6 6 DTAL 149.3 147.6 -1.6 -1.1 CTA PF+MMS CONSUMPTION DTMM RTMM ΔP (W) Δ (%) DU 1.9 4.1 2.2 / PU 0.0 0.0 0.0 / SU 2.2 2.6 0.3 / F-X PANEL 43.3 49.3 6.0 14 OK 0.0 0.0 / 0.6 Sup TC 0.0 0.0 0.0 / Stype TC 0.0 0.0 / 0.6 an +Y SMU 0.0 0.0 / 0.6	M2 AREA	14.9	15.1	0.2	1	ОК	
TAL 149.3 147.6 -1.6 -1.1 OK CTA PF+MMS CONSUTTION DTMM RTMM ΔP (W) Δ (%) CU 1.9 4.1 2.2 / PU 0.0 0.0 0.0 / OK STU 0.0 0.0 0.0 / OK SPU 0.0 0.0 0.0 / OK ANK 2.2 2.6 0.3 / OK ANK 2.2 2.6 0.3 / OK Inf RWs 0.0 0.0 0.0 / OK Start YCDU 0.0 0.0 0.0 / OK Start YSMU 0.0 0.0 1.7 13.5 18	M1 AREA	10.4	11.0	0.6	6	ОК	
DTMM RTMM ΔP (W) Δ (%) CU 1.9 4.1 2.2 / PU 0.0 0.0 0.0 / SU 0.0 0.1 0.1 / NK 2.2 2.6 0.3 / F-X PANEL 43.3 49.3 6.0 14 OK 0.0 0.0 / 0K Inf RWS 0.0 0.0 0.0 / Sup TTC 0.0 0.0 0.0 / Stype TC 0.0 0.0 0.0 / 0K SS 11.7 13.5 1.8 15 0K	TOTAL	149.3	147.6	-1.6	-1.1	ОК	
DTMM RTMM ΔP (W) Δ (%) CU 1.9 4.1 2.2 / DU 0.0 0.0 0.0 / SU 2.2 2.6 0.3 / F-X PANEL 43.3 49.3 6.0 14 OK Inf RWS 0.0 0.0 0.0 / OK OK Sup TC 0.0 0.0 0.0 / OK OK Star YPCDU 0.0 0.0 0.0 / OK OK Star YPSMU 0.0 0.0 0.0 / OK OK Sta	CTA PF+MMS CONSUMPTION						
CU 1.9 4.1 2.2 / PU 0.0 0.0 0.0 / OK SU 0.0 0.0 0.0 / OK SNE 0.0 0.1 0.1 / OK NK 2.2 2.6 0.3 / OK ANK 2.2 2.6 0.3 / OK ATTERY 2.8 2.2.1 -1.7 -7 OK Inf RWS 0.0 0.0 0.0 / OK Sup TC 0.0 0.0 0.0 / OK an +Y SMU 0.0 0.0 0.0 / OK SS 11.7 13.5 1.8 15 OK		DTMM	RTMM	ΔP (W)	Δ (%)		
PU 0.0 0.0 0.0 0.0 / OK SFU 0.0 0.0 0.0 / OK OK SFU 0.0 0.0 0.0 / OK OK SFU 0.0 0.0 0.0 / OK OK SFU 0.0 0.1 0.1 / OK OK RYPTO TURK 0.0 0.1 0.1 / OK OK ANK 2.2 2.6 0.3 / OK OK ATTERY 2.3 2.2.1 -1.7 -7 OK Stinf RWS 0.0 0.0 0.0 / OK OK sup TTC 0.0 0.0 0.0 / OK OK OK an +Y SMU 0.0 0.0 0.0 / OK OK OK SS 11.7 13.5 1.8 15 OK OK	PCU	1.9	4.1	2.2	/	ОК	
SFU 0.0 0.0 0.0 / OK DNE PDHT (*) 84.6 80.5 -4.1 -5 OK DNE YPDT TURK 0.0 0.1 0.1 / OK ANK 2.2 2.6 0.3 / OK Inf RWS 0.0 0.0 0.4 OK Sup TTC 0.0 0.0 0.0 / OK an +Y SMU 0.0 0.0 0.0 / OK OK SS 11.7 13.5 1.8 15 OK OK	VPU	0.0	0.0	0.0	/	ОК	
DNE PDHT (*) 84.6 80.5 -4.1 -5 OK RYPTO TURK 0.0 0.1 0.1 / OK RYPTO TURK 0.0 0.1 0.1 / OK NAK 2.2 2.6 0.3 / OK F-X PANEL 43.3 49.3 6.0 14 OK ATTERY 23.8 22.1 -1.7 -7 OK Linf RWS 0.0 0.0 0.0 / OK Sup TC 0.0 0.0 0.0 / OK an +Y SMU 0.0 0.0 0.0 / OK SS 11.7 13.5 1.8 15 OK	CSFU	0.0	0.0	0.0	/	ОК	
RVPTO TURK 0.0 0.1 0.1 / OK ANK 2.2 2.6 0.3 / OK ANK 2.2 2.6 0.3 / OK XNK 2.2 2.6 0.3 / OK XNK 2.2 2.6 0.3 / OK XANK 2.2 2.6 0.3 / OK ANK 2.3 49.3 6.0 14 OK ATTERY 23.8 22.1 -1.7 -7 OK 21nf RWs 0.0 0.0 0.0 / OK Sup TTC 0.0 0.0 0.0 / OK an +Y SMU 0.0 0.0 0.0 / OK SS 11.7 13.5 1.8 15 OK	ZONE PDHT (*)	84.6	80.5	-4.1	-5	ОК	
ANK 2.2 2.6 0.3 / OK F-X PANEL 43.3 49.3 6.0 14 OK ATTERY 23.8 22.1 -1.7 -7 OK Linf RWs 0.0 0.0 0.0 / OK Ssup TTC 0.0 0.0 0.0 / OK an +Y SMU 0.0 0.0 0.0 / OK SS 11.7 13.5 1.8 15 OK	CRYPTO TURK	0.0	0.1	0.1	/	ОК	
	TANK	2.2	2.6	0.3	/	ОК	
ATTERY 23.8 22.1 -1.7 -7 OK Unif RWS 0.0 0.0 0.0 / OK Einf RWS 0.0 0.0 0.0 / OK Sup TC 0.0 0.0 0.0 / OK sup TC 0.0 0.0 0.0 / OK sh Y PCDU 0.0 0.0 0.0 / OK s5S 11.7 13.5 1.8 15 OK	PF -X PANEL	43.3	49.3	6.0	14	ОК	
Inf RWs 0.0 0.0 0.0 / OK Zinf RWs 0.0 0.0 0.0 / OK Sign TTC 0.0 0.0 0.0 / OK san -Y PCDU 0.0 0.0 0.0 / OK san -Y SMU 0.0 0.0 0.0 / OK SS 11.7 13.5 1.8 15 OK	BATTERY	23.8	22.1	-1.7	-7	ОК	
Inf RWs 0.0 0.0 0.0 / OK Jsup TTC 0.0 0.0 0.0 / OK an +Y SMU 0.0 0.0 0.0 / OK ssp TTC 0.0 0.0 0.0 / OK an +Y SMU 0.0 0.0 0.0 / OK SS 11.7 13.5 1.8 15 OK	-Zinf RWs	0.0	0.0	0.0	/	ОК	
Sup TC 0.0 0.0 0.0 / OK an +Y SMU 0.0 0.0 0.0 / OK ss Y SMU 0.0 0.0 0.0 / OK ss S 11.7 13.5 1.8 15 OK	+Zinf RWs	0.0	0.0	0.0	/	ОК	
an - Y FCDU 0.0 0.0 0.0 / OK an +Y SMU 0.0 0.0 0.0 / OK SS 11.7 13.5 1.8 15 OK	+Zsup TTC	0.0	0.0	0.0	/	OK	
an 4Y SMU 0.0 0.0 0.0 / OK SS 11.7 13.5 1.8 15 OK	Pan -Y PCDU	0.0	0.0	0.0	/	OK	
SS 11.7 13.5 1.8 15 OK	Pan +Y SMU	0.0	0.0	0.0	/	OK	
477. 479. 47	CSS	11.7	13.5	1.8	15	ОК	
167.5 172.2 4.7 2.8 OK	TOTAL	167.5	172.2	4.7	2.8	ок	

Any questions?

14th - 15th October 2014 ThalesAlenia

Appendix J

Thermal issues related to ExoMars EDLS performance

Emilie Boulier Grégory Pinaud Patrick Bugnon (Airbus Defence & Space, France)

Abstract

During its planetary entry, EXoMars heatshield encounters specific hypersonic environments, in terms of aerothermochemistry, radiation, particule flows... and therefore requests a specific effort, in relation to aerodynamic characterisation and quantification of thermal / thermomechanical loads, as well as demonstration of thermostructural integrity and thermal efficiency.

Airbus Defense & Space is a major contributor to both issues.

The present communication aims at emphasizing two important axes of progress :

- Performance of the vehicle & application thanks to TPS optimisation
 - Updated material data sets could be derived from dedicated tests
 - Material data sets were integrated to thermophysical modelisations
 - Improved thermophysical modelisations allowed TPS thickness reduction
- Quality of planned postflight analysis, thanks to advanced modelisation including parametric and statistic analyses, inverse methodologies, cosimulation.

Thermal issues related to ExoMars EDLS Performance

E. Boulier, G. Pinaud, P. Bugnon AIRBUS Defence & Space – Thermal & Thermo-mechanical Engineering Aquitaine Site

SIMOUN CO_2 test conditions deliver conservative, flight-representative aerothermal conditions on a Flat Plate sample, in terms of cold wall heat flux, shear stress, local pressure evolutions.

Calibration data (H_{i}/RT_{0} , P_{i} , T_{cw} , Φ_{cw} , P_{e} , Q), design data (nozzle expansion, wedge angle...), flow physical assumptions (frozen flow, heat flux formulas...) make possible an estimation of recovery enthalpy & convection coefficient. Estimated & experimental convection coefficients present similar evolutions, therefore a dependency of heat flux versus wall temperature can be derived from calibration data.

Conductivity & specific heat

Virgin properties are obtained from characterization; charred properties are theoretical or extrapolated from virgin state.

Pyrolysis

Mass loss kinetic is described as a multi-Arrhenius law from a series of TGA at several heating rates.

Reference enthalpies of virgin & charred material can be determined from molecular composition analysis. Pyrolysis heat of material is evaluated on the basis of an "average" solid enthalpy and continuity considerations, from finite rate to equilibrium heterogeneous chemistry.

Enthalpy of pyrolysis gas (as a function of pressure & temperature) is derived from homogeneous chemical equilibrium conditions.

Appendix K

A personal look back on Thermal Software evolution within the past 36 years

Harold Rathjen (HRC, Germany)

Abstract

The evolution of thermal software used in European space industries from the beginning until today marks a long way from some in-house written software to the current status of today's most important packages. During almost 30 years this way was accompanied by the ESTEC annual workshop on ECLS software that started in 1986 as the Esatan workshop, but soon had to be opened for other software developments, among which Thermica has to be mentioned in first place. This presentation gives a historical look back from a personal point of view of a young thermal engineer who started working in the thermal department of ERNO in Bremen right at the time when the Spacelab project was won and the first family of commercial communication satellites (ECS/MARECS) was started. Some highlights are the decision for the cooperation between ESTEC and a little company in England to develop Esatan, and a few years later the search for an appropriate radiation software for the Columbus project. Not to forget the Esabase framework, that was used during many years as an intermediate software. Finally the problems of establishing a common thermal analysis method within the Ariane project in front of the merging of the participating companies are mentioned.

1. The days before Esatan

This period lasted from the first European space activities (in the early sixties) until the introduction of ESATAN in most of the European space companies. It was characterised by the following:

- In the early years no off-the-shelf thermal software was available and companies had to rely on their own in-house written software
- In ERNO these were GLEITEX for steady state and TRANSIT for transient analyses (developed for the Helios project)
- Models were defined in punch cards and output was given on endless computer paper, i.e. it could not be directly used for the report but had to be included via cut and paste
- Computations were performed in a remote computer center with partly tremendous costs leading to the strange situation that the engineers spent extra effort in order to save computer CPU time

3

4

1. The days before Esatan (cont'd)

- View factors were defined manually with the help of a view factor meter applied in a wooden scale model of a satellite
- A view factor meter was a small parabolic mirror with a grid on it that was placed on surface i in the model. The percentage of the grid that was covered by the mirror image of surface j gave then the view factor to that surface
- Each relevant internal radiative link had to be defined that way and the results had to be written into form sheets that were then processed by a software (SPIEGEL) considering multi reflection and outputting the relevant conductor format

Around 1977 when the Spacelab project started, the NASA Thermal Software SINDA was distributed by ESTEC to the European space industry, accompanied by further software:

- NASA radiative software called LOHARP with following 4 modules:
 - VUFAC View factor calculation using double integral method
 - RADCON Computation of multi reflection
 - ROHEAT Computation of natural radiation
 - PRTPCH Outputting the results in SINDA format
- Later ESTEC established a revised version of LOHARP and distributed it under the name VWHEAT with the same 4 modules
- For visualisation of the used geometries a simple plot program called PTD10 was also provided. It was only a wire frame display without hidden line feature but nevertheless was well appreciated
- All was provided with the source code

1. The days before Esatan (cont'd)

In the period that followed, SINDA was established at ERNO, at least for the most important projects (Spacelab and the new European family of communication satellites OTS/ECS/MARECS)

- The old programs/methods were used in parallel for a long time
- The results of the radiative software and even of the form factor meter method, once established, were used during almost the complete life time of the model. The manual introduction of modifications (e.g. for taking into account new surface properties) was deemed easier than repeating the calculations due to the high CPU times
- During this time still a lot of little Fortran programs were written by the thermal engineers to handle and modify model data and to plot transient temperature results
- In the early eighties we made a test of the thermal module of Nastran in cooperation with our structural colleagues. The result was not very encouraging (at that time!) and we soon gave up

6

2. The European Thermal Analyser Network and first Workshops

While industry was working with the a.m. NASA software, ESTEC was thinking about a completely new European thermal software, the driving power behind this being Mr. Charles Stroom of ESTEC/TST:

- First idea was to create a software corresponding to the state of the art combining thermal and radiative analysis in one tool
- Working title for this ambitious project was MANIP and a very first version was presented to space industry under the name of MINIP (around 1982 ?) which indeed looked very impressive but a long development time had to be envisaged
- While MANIP was internally further pursued it was then decided to proceed in small steps and to begin simply with a European version of SINDA. In fact, still today ESATAN consists of the same block structure as SINDA

7

2. The European Thermal Analyser Network and first Workshops (cont'd)

 It was furthermore decided to assign the development of this sofware to an external company under ESTEC contract and finally the Mechanical Engineering Laboratory (MEL) of GEC in England was selected. Today known as ITP, this company is still responsible for ESATAN

The first version of the new software was presented by Mr. John Turner of MEL on the first (ESATAN-) workshop that took place in April 1985 and that was organized by Ch. Stroom

- Representatives of 25 companies participated out of 37 that were invited. They had first contact with the software during hands-on sessions on the ESTEC IBM mainframe
- As for the software provided by ESTEC before, distinction had to be made between the various computer platforms used, not only w.r.t. the software itself, but also to the run procedure

3. The ESABASE Framework

In the early eighties another software tool was available from ESTEC, called ESABASE, this time provided by the mathematical department WMA and probably resulting from the MANIP development

- It was a framework intended as a multi disciplinary tool where a common geometry model could be used for various analyses tools such as:
- Thermal, Radiation, Plume, Mass, Atomic Oxygene, Perturbation, Meteorite/Debris, Charging, Field of View and others
- It provided a modelling environment and its own language to define the geometry. Today this language (with some modifications) is still used in THERMICA
- An orbit generator ORHPL and a graphical interface for pre and post processing were also available
- The first presentation of ESABASE at the workshop was in 1993 after the software existed already some ten years

4. The European Radiation Software

In the late eighties the European space industry was preparing the start of the COLUMBUS project. It was clear that ESATAN would be used as thermal analyser but a corresponding radiation software was still missing

As the COLUMBUS prime contractor, it was the task of ERNO to find an appropriate tool and in fact there were two candidate solutions available:

- At DORNIER in Germany they had meanwhile spent some effort to develop a new version of VWHEAT (STARDUST) and indeed they had achieved a considerable improvement. However, view factor calculation was still based on the double integral method
- At MATRA in France, who co-operated at that time with the ESTEC mathematical department WMA for the MANIP development, they proposed a new software based on the ray tracing technique (MATRAD and MATFLUX)

4. The European Radiation Software (cont'd)

Nevertheless, it was the intention of the ESTEC thermal department YCV to develop their own radiation software. There was obviously an internal dissent between WMA with MATRA on one side and YCV on the other about the software development policy

- This is probably the reason why today we have two concurrent European thermal software tools: SYSTEMA-THERMICA and ESATAN-TMS
- This is good for competition but on the other side, wouldn't it be more efficient to put all development effort into only one tool?
- It was then an evident decision that GEC was assigned to develop this software under the name ESARAD
- Due to contractual reasons WMA had to provide the kernel of their tool to GEC who built ESARAD around it, which hence is also based on the ray tracing technique

4. The European Radiation Software (cont'd)

- Different from the first ESATAN version we had, I must say that working with this early ESARAD version was really hard and it was far away from being applied for a real project
- One reason for this was the concept of ESARAD to define the model on the screen and to store everything directly in a model data base without the use of an ASCII input file
- When the software crashed for whatever reason the data base could not be restored and all work was lost. It was said that all data were stored on the session log file, but before reloading the relevant model data from there, this log file had to be cleaned, which was not so easy
- Today this problem is solved by the option to automatically create a clean log file at any time during model creation which allows the user to reload or copy the model

 Therefore this feature would have been very helpful for this model but unfortunately ESARAD became operational too late and I had to work around without cutting

4. The European Radiation Software (cont'd)

- The conventional method to model the above geometry was to approximate the cutting edges by small bits of non-cut primitives. However for curved shapes this was difficult and led to a unnecessary high number of nodes
- At DASA, ESARAD became operational around 1998 but still was not always robust. Only after switching from Solaris to Windows workstations ESARAD worked satisfactory

	-	
-	•••	
	-	

5. Integrated Thermal Analysis Tools

Today each of the two European thermal analysis packages is available as fully integrated tool for radiation and thermal analysis including pre and post processing operated from a common graphical user interface. Furthermore both provide an automatic conductor generation based on the geometry

- ESATAN/ESARAD became ESATAN-TMS recently enhanced by the solid modelling feature as commonly required by AST-LMX and AST-BRE for the Ariane project
- THERMICA was enhanced by its own thermal solver THERMISOL and became SYSTEMA-THERMICA. V4 is not yet operational in Bremen, as the step from v3 is considered too big to be done in a running project
- Some other software packages providing similar features have also been considered or are used at Dasa (later Astrium) in Bremen

6. Workshop Milestones

1985:	Presentation of first ESATAN version - Followed by 3 ESATAN User Meetings in 1987, 1989 and 1990
1991:	Presentation of first ESARAD version - Took place together with ICES conference in Florence, Italy – An Overview over Soviet Standard Software for thermal modelling of Spacecraft was give by Prof. Anfimov from Kaliningrad was given
1992:	Increasing participation of other software, e.g. TMG, ECOSIM, and many others. Users present projects, for that the software was used
1993:	First presentation of ESABASE on the workshop, workshop renamed to Workshop on Thermal and ECLS Software
1994:	First presentation of STEP-TAS
2001:	First presentation of THERMICA on the workshop
2012:	Renamed to Space Thermal Analysis Workshop
	22

Appendix L

General-purpose GPU Radiative Solver

Andrea Tosetto Marco Giardino Matteo Gorlani (Blue Engineering & Design, Italy)

Abstract

In the scope of the CADET project, a new radiative tool was developed in Blue Engineering. The tool can compute the extended view-factor and extended incident heat fluxes for solar, planetary and albedo contributions using the Monte Carlo Ray Tracing model. The software is implemented using the OpenCL framework, in order to take advantage of the computational capabilities of GPGPU hardware and dedicated computation hardware.

A comparison between tool results and ESATAN TMS results is performed in order to validate the tool.

CADET Project

- CApture and DE-orbiting Technologies
- Develop enabling technologies required for Active Debris Removal from LEO orbits:
 - IR and Visible tracking of the target
 - Develop GNC for close rendez-vous, final approach and capture phases
 - technologies, strategies and concepts for target capture and solidarization
- BLUE contribution: <u>onboard</u> IR image processing to get target relative position and motion, with simplified thermal analysis (low power HW)

28th European Space Thermal Analysis Workshop 14-15 October 2014, ESA/ESTEC Sheet 3

Radiative heat exchange

Radiation exchange	Heat fluxes
View Factor F _{ij} : fraction of the radiant energy emitted by surface <i>i</i> <u>directly</u> <u>intercepted</u> by surface <i>j</i> ;	Direct incident heat fluxes : radiative energy emitted by an external source <u>directly intercepted</u> by a surface;
Radiative exchange factors (REF, also Gebhart factors) B _{ij} : fraction of the radiant energy emitted by surface <i>i</i> <u>finally</u> <u>absorbed</u> by surface <i>j</i> (including surfaces diffuse reflections);	Total absorbed heat fluxes : radiative energy emitted by an external source <u>finally absorbed</u> by a surface (including diffuse reflection component);
Extended view factors F _{ij} : fraction of the radiant energy emitted by surface <i>i</i> <u>finally</u> <u>absorbed</u> by surface <i>j</i> , directly of through diffuse or specular reflections and through transmissions; \rightarrow GR (also REF)	Extended incident heat fluxes : radiative energy emitted by an external source <u>finally absorbed</u> by a surface, directly of through diffuse or specular reflections and through transmissions;
28 th European Space Thermal Analysis Workshop 14-15 October 2014, ESA/ESTEC Sheet 4	April 1 blue engineering
Why GPGPU?

- Rendering real life pictures is quite similar to evaluate heat fluxes and view factors
- GPU are made for rendering
- Modern GPU are programmable for general purpose calculations using CUDA or OpenCL programming languages (most mature and common)
- GPU are powerful: CPUs ~10GFLOPS, GPUs ~5TFLOPS
- GPU consume less power per GFLOPS (mobile GPUs ~4watts)

General-Purpose computing on Graphics Processing Units (GPGPU) → using GPU hardware to perform computations

	GPGPU	- history	
General	•Purpose computing on G → using GPU hardware	raphics Processing Units to perform computations	(GPGPU)
Dedie opera scene	cated graphic hardware ation on huge data sets in es	evolved aiming to boost order to render more det	t simple ailed CG
 From progr 	2002 (NVIDIA GeForce 3, rammable rendering pipel	ATI Radeon 9700): introdu ine (Direct3D 8.0, OpenGL	uction of . 1.4)
 Dedicomposition 	cated languages enabled outations:	GPU processors to be	used for
	CUDA, 2007	OpenACC, 2012	
	OpenCL, 2009	C++ AMP, 2012	
28 th Europea 14-15 Octob Sheet 6	an Space Thermal Analysis Workshop er 2014, ESA/ESTEC	API	** olue engineering

GPGPU – structure (2)							
	CPU	GPU					
Architecture	MIMD (Multiple Instruction Multiple Data) → Multi purpose, independent processors/cores	SIMD (Single Instruction Multiple Data) \rightarrow 1 control unit dispatch commands to multiple ALUs. Texture units					
Execution	Branch execution flow, control structures	Optimized for branchless execution (maximize occupancy)					
Memory structure	 Low latency, low bandwidth memory (RAM, up to 20 GB/s) L1, L2, L3 levels cache memory CPU registers 	 High latency, high bandwidth memory (VRAM, up to 300 GB/s) On chip, block shared memory GPU registers 					
Memory management	Automatic (e.g. cache pre-fetch)	User controlled data flow between VRAM and shared memory, registers					
Context switch	Software (thread management by OS)	HW (thread switch controlled by the control unit to hide memory latency)					
Precision	Single, double, quad, with almost same performances	Preferred single, double available but with <u>huge performance</u> losses (at best, ¼ of single precision on latest hardware)					
28 th European 14-15 October Sheet 8	Space Thermal Analysis Workshop 2014, ESA/ESTEC	April 1 biue engineering					

GPGPU Programming languages

CUDA	OpenCL				
GPGPU language by NVIDIA	Open standard by Khronos Group (OpenGL)				
Specific and available only on NVIDIA GPUs	Designed for heterogeneous computing: available on NVIDIA and AMD GPUs, ARM processors, CPUs (Intel & AMD), FPGA vendors				
Offline kernel compilation to intermediate language	Runtime kernel compilation of the provided kernel sources by the device specific driver				
Mature framework, with libraries (CuFFT, CuBLAS, etc.) and tools (IDE, profiler, debugger, etc.)	Less advanced libraries and tools, generally from open source projects				
Work only on NVIDIA hardware	The standard guarantee software portability among different HW (NB execution performances are not guaranteed: they can only be achieved tuning software on each specific hardware architecture)				
28 th European Space Thermal Analysis Worksh 14-15 October 2014, ESA/ESTEC Sheet 9	op *** blue engineering				

GPGPU Platform (OpenCL dialect)

Host (CPU)	Device (GPU, FPGA, etc)
Host code: C, C++, Fortran, C#, Java, Python, ecc.	Device code (kernels): OpenCL C, which is a modified C99 (add vector primitives and vector functions; some restrictions in use of pointers, some standard C99 headers are missing)
Manage the algorithm workflow	Perform computations on the provided data sets
Manage the data transfer between host memory (RAM) and device memory (VRAM); memory can be a shared area between host and device	Manage data flow among device mass memory, device shared memory and processor registers, through kernel's instructions
Manage global execution synchronization	Execution is divided in 1D, 2D or 3D workgroups; block synchronization can be obtained through device shared memory
Host code controls the para	llel execution of dedicated kernels on els are compiled during initialization

Computer Graphics Rendering Heritage

- Rasterisation → objects lightning obtained through artifacts (textures)
- Global illumination → direct evaluation of an objects appearance, due to objects and light sources positions, object properties, etc
- Ray Tracing Monte Carlo (RTMC)

 → Elegant solution to compute global illumination, under development from 1980s [Kay & Kajiya 1986]

[Fabianowski 2011]

Open Box test – Earth flux results

Node	10	11	20	21	30	31
CADET	153.7860	6.7952	43.1359	11.6836	42.5930	10.3962
ESATAN	153.6489	6.9998	42.6820	11.4758	42.3568	10.1615
Abs. err.	0.137070	-0.204551	0.453887	0.207798	0.236169	0.234655
Rel. Err. %	0.089209	2.922240	1.063411	1.810749	0.557570	2.309245
Node	40	41	50	51	60	61
CADET	0	34.9459	42.9083	11.7025	42.9015	42.9358
ESATAN	0	35.0538	42.9592	11.4846	42.6880	42.7810
Abs. err.	0	-0.107996	-0.050915	0.217839	0.213462	0.154752
Rel. Err. %	0	0.308085	0.118519	1.896782	0.500051	0.361730
NB due to	o the selected	l attitude, Ear	rth fluxes are	the same on	each point of	the orbit
28 th European	Space Thermal A	nalvsis Worksho	0	(***

11

20 21

30

Open Box test – Sun flux results

40

50

60

61

Tot

engineering

41

P1	0.00	0.00	0.00	0.00	1000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1000.00
P2	0.00	0.00	0.00	0.18	923.88	0.00	382.68	0.00	0.00	0.09	0.00	0.00	1306.84
P3	0.00	0.00	0.00	0.00	707.11	0.07	707.11	0.14	0.00	0.00	0.00	0.00	1414.43
P4	0.00	0.00	0.00	0.00	382.68	0.04	923.88	0.08	0.00	0.00	0.00	0.00	1306.68
Р5	0.00	0.00	0.00	0.00	0.00	0.00	1000.00	0.00	0.00	0.00	0.00	0.00	1000.00
P6	0.00	0.09	0.00	0.18	0.00	0.09	923.88	0.09	0.00	0.00	382.68	0.18	1307.21
P7	0.00	0.28	0.00	0.14	0.00	0.42	707.11	0.57	0.00	0.35	707.11	0.07	1416.05
P8	0.00	0.28	0.00	0.28	0.00	0.26	382.68	0.50	0.00	0.22	923.88	0.09	1308.19
P9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1000.00	0.00	1000.00
_													
	10	11	20	21	30	31	40	41	50	51	60	61	Tot
P1	-0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.05
P2	0.00	0.00	0.00	0.18	-0.02	0.00	0.00	0.00	0.00	0.09	0.00	0.00	0.26
P3	0.00	0.00	0.00	0.00	-0.02	0.07	0.00	0.14	0.00	0.00	0.00	0.00	0.19
P4	0.00	0.00	0.00	0.00	-0.02	0.04	0.00	0.08	0.00	0.00	0.00	0.00	0.10
P5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P6	0.00	0.09	0.00	0.18	0.00	0.09	0.00	0.09	0.00	0.00	-0.02	0.18	0.63
P7	0.00	0.28	0.00	0.14	0.00	0.42	0.00	0.57	0.00	0.35	-0.02	0.07	1.81
P8	0.00	0.28	0.00	0.28	0.00	0.26	0.00	0.50	0.00	0.22	-0.02	0.09	1.61
					0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05
P9	-0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.05
P9	-0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.05
	P1 P2 P3 P4 P5 P6 P7 P8 P9 P1 P2 P3 P4 P5 P6 P6 P7	P1 0.00 P2 0.00 P3 0.00 P4 0.00 P5 0.00 P6 0.00 P7 0.00 P8 0.00 P9 0.00 P1 -0.05 P2 0.00 P3 0.00 P4 0.00 P3 0.00 P4 0.00 P5 0.00 P5 0.00	P2 0.00 0.00 P2 0.00 0.00 P3 0.00 0.00 P4 0.00 0.00 P5 0.00 0.00 P6 0.00 0.00 P7 0.00 0.28 P8 0.00 0.28 P9 0.00 0.00 P2 0.00 0.00 P3 0.00 0.00 P4 0.00 0.00 P3 0.00 0.00 P4 0.00 0.00 P4 0.00 0.00 P5 0.00 0.00 P6 0.00 0.02	P1 0.00 0.00 0.00 P2 0.00 0.00 0.00 P3 0.00 0.00 0.00 P4 0.00 0.00 0.00 P5 0.00 0.00 0.00 P6 0.00 0.28 0.00 P7 0.00 0.28 0.00 P8 0.00 0.28 0.00 P9 0.00 0.00 0.00 P1 -0.05 0.00 0.00 P3 0.00 0.00 0.00 P3 0.00 0.00 0.00 P3 0.00 0.00 0.00 P4 0.00 0.00 0.00 P5 0.00 0.00 0.00 P6 0.00 0.09 0.00 P7 0.00 0.28 0.00	P1 0.00 0.00 0.00 0.00 P2 0.00 0.00 0.00 0.18 P3 0.00 0.00 0.00 0.00 P4 0.00 0.00 0.00 0.00 P5 0.00 0.00 0.00 0.00 P6 0.00 0.28 0.00 0.14 P8 0.00 0.28 0.00 0.28 P9 0.00 0.28 0.00 0.00 P1 -0.05 0.00 0.00 0.00 P2 0.00 0.00 0.00 0.00 P3 0.00 0.00 0.00 0.00 P4 0.00 0.00 0.00 0.00 P3 0.00 0.00 0.00 0.00 P4 0.00 0.00 0.00 0.00 P5 0.00 0.09 0.00 0.14 P7 0.00 0.28 0.00 0.14	P1 0.00 0.00 0.00 0.00 0.00 0.00 P2 0.00 0.00 0.00 0.18 923.88 P3 0.00 0.00 0.00 0.00 707.11 P4 0.00 0.00 0.00 0.00 382.68 P5 0.00 0.00 0.00 0.00 0.00 P6 0.00 0.28 0.00 0.14 0.00 P8 0.00 0.28 0.00 0.28 0.00 P9 0.00 0.00 0.00 0.00 0.00 P1 -0.05 0.00 0.00 0.00 0.00 P2 0.00 0.00 0.00 0.00 0.00 P2 0.00 0.00 0.00 0.00 0.00 P2 0.00 0.00 0.00 0.00 -0.02 P3 0.00 0.00 0.00 0.00 -0.02 P4 0.00 0.00	P1 0.00 0.00 0.00 0.00 0.00 0.00 P2 0.00 0.00 0.00 0.00 0.00 923.88 0.00 P3 0.00 0.00 0.00 0.00 707.11 0.07 P4 0.00 0.00 0.00 0.00 382.68 0.04 P5 0.00 0.00 0.00 0.00 382.68 0.04 P5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P6 0.00 0.02 0.00 0.14 0.00 0.42 P8 0.00 0.28 0.00 0.28 0.00 0.00 0.00 P1 -0.05 0.00 0.00 0.00 0.00 0.00 P3 0.00 0.00 0.00 0.00 0.00 0.00 P3 0.00 0.00 0.00 0.00 0.00 0.00 P3 0.00 0.00 0.0	P1 0.00 0.00 0.00 1000.00 0.00 0.00 P2 0.00 0.00 0.00 0.18 923.88 0.00 382.68 P3 0.00 0.00 0.00 0.00 707.11 0.07 707.11 P4 0.00 0.00 0.00 0.00 382.68 0.04 923.88 P5 0.00 0.00 0.00 0.00 382.68 0.04 923.88 P5 0.00 0.00 0.00 0.00 0.00 1000.00 P6 0.00 0.00 0.00 0.00 0.00 0.00 923.88 P7 0.00 0.28 0.00 0.14 0.00 0.42 707.11 P8 0.00 0.28 0.00 0.28 0.00 0.26 382.68 P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P1 -0.05 0.00 0.00 0.00	P1 0.00 0.00 0.00 100.00 0.00 0.00 0.00 P2 0.00 0.00 0.00 0.18 923.88 0.00 382.68 0.00 P3 0.00 0.00 0.00 0.00 707.11 0.07 707.11 0.14 P4 0.00 0.00 0.00 0.00 382.68 0.04 923.88 0.08 P5 0.00 0.00 0.00 0.00 0.00 0.00 1000.00 0.00 P6 0.00 0.00 0.00 0.00 0.00 0.00 1000.00 0.00 P6 0.00 0.28 0.00 0.14 0.00 0.42 707.11 0.57 P8 0.00 0.28 0.00 0.28 0.00 0.26 382.68 0.50 P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P1 -0.5 0.00 0.00 0.00	P1 0.00 0.00 0.00 1000.00 0.00 <t< th=""><th>P1 0.00 0.00 0.00 1000.00 <t< th=""><th>P1 0.00 0</th><th>P1 0.00 0.00 0.00 1000.00 <t< th=""></t<></th></t<></th></t<>	P1 0.00 0.00 0.00 1000.00 0.00 <t< th=""><th>P1 0.00 0</th><th>P1 0.00 0.00 0.00 1000.00 <t< th=""></t<></th></t<>	P1 0.00 0	P1 0.00 0.00 0.00 1000.00 0.00 <t< th=""></t<>

H10 test – Description (1)

- Ariane IV 3rd stage, standard CADET target
- Analyze target thermal behavior to allow IR tracking
- Test orbital parameters:

Radius <i>r</i>	7161 km
Eccentricity e	0
Inclination <i>i</i>	45°
Argument of periapsis ω	0°
Ascending node Ω	-90°

- Attitude: LOCS, Z body aligned with $-\vec{V}$, Y body aimed to Z Earth
- Optical properties: guess, obtained through aerospace materials data base ($\overline{\alpha}$ =0.537, $\overline{\varepsilon}$ =0.266)
- Ray density (rays/m²): 10k (Sun), 100k (Earth, albedo)
- 41 orbital position computed (half orbit, no eclipse)

28th European Space Thermal Analysis Workshop 14-15 October 2014, ESA/ESTEC Sheet 19

ngineering

Case	ESATAN TMS	CADET	Case	ESATAN TMS	CADET	Δ X1000	۵%			
# GR	9453	9287	\sum gr	83.070	83.154	84.240	0.101			
Common GR	6495		$\sum GR_{Model to space}$	48.304	48.298	-6.476	-0.013			
Additional GR	2958	2792	$\sum GR_{Model to inactive}$	6.595	6.595	0.834	0.012			
$\sum {\sf GR}_{{\sf Uncommon}}$	1.2167e-3	57.818e-3	GR _{Model to model}	28.17	28.26	89.882	0.319			
Max Gr _{Uncommon}	0.1372e-3	1.079e-3		83.068	83.096	27.859	0.033			
Max Δ, GR(3105,3205) 0.31389 0.31152 2.372 0.7										
28 th European 14-15 October Sheet 27	CADET GR C Space Thermal 2014, ESA/ESTE	cut off value: Analysis Worksh C	1e-6		A	t b eng	★ Ue ineering			

Pe	Performance – Test Hardware										
				Clock		M	emory		Peak performances		
Device	Vendor	Туре	CU	GHz	Туре	GB	Float4 GB/s	Float16 GB/s	Int4 GIOPS	Float4 GFLOPS	Float16 GFLOPS
Core i7 940	Intel	CPU	4+4	2.93	DDR3	18	12.29	12.29	8.90	27.77	25.69
Core i3 2370M	Intel	CPU	2+2	2.40	DDR3	4	9.56	9.06	/	19.12	19.12
Core i3 3220	Intel	CPU	2+2	3.30	DDR3	8	10.96	11.05	/	26.19	26.61
Core i7 4700HQ	Intel	CPU	2.4	2.40	DDR3	8	17.20	17.09	/	35.06	36.71
GT 630	NVIDIA	GPU	2	1.62	GDDR3	1	17.52	4.56	103.07	307.50	280.09
GTX 670M	NVIDIA	GPU	7	1.20	GDDR5	1.5	61.46	15.36	/	786.62	718.22
GT 750M	NVIDIA	GPU	2	1.10	DDR3	4	25.60	11.64	/	740.01	740.00
GTX Titan Black	NVIDIA	GPU	15	0.98	GDDR5	6	298.26	107.37	1010.58	4685.42	4685.42
Quadro 2000	NVIDIA	GPU	4	1.25	GDDR5	1	35.87	8.97	158.94	472.28	459.16
HD 5850	AMD	GPU	18	0.725	GDDR5	1	86.04	34.41	443.27	1738.85	1782.76
HD 7870 GE	AMD	GPU	20	1.00	GDDR5	2	130.31	35.51	505.76	2507.83	437.86
HD 7950 Boost	AMD	GPU	28	1.15	GDDR5	3	278.37	48.54	748.95	3725.15	3650.85
HD 8970M	AMD	APU*	5	0.825	DDR3	2	7.99	2.21	/	251.56	247.00
* Accelerated Pro- 28 th European 14-15 October Sheet 29	cessing Ur Space The 2014, ESA	nit, AMD ermal Ai /ESTEC) defini nalysis	tion of a Worksho	chip whic op	h cont	ains a CPU	J section a	nd a GPU	section * blu engin	+ Ie eering

	Tracing	, Mr/s			Εχεςι	ition times, secon	ids		
Device	Sun	REF Planet	41 Sun fluxes	Sun, mean	GR + UV REF	41 Earth + Albedo (CPU)	Earth + Albedo, mean	Total	Gain
Core i7 940	2.25	1.61	57.21	1.40	224.28	8.94	0.22	302.66	3.24
Core i3 2370M	1.21	0.65	240.72	5.87	590.10	15.02	0.40	863.11	1.14
Core i3 3220	1.23	1.01	106.41	2.60	378.89	20.14	0.50	524.39	1.87
Core i7 4700HQ	2.25	1.56	57.14	1.39	231.73	5.17	0.13	303.27	3.24
GT 630	2.02	1.33	62.98	1.54	307.10	20.15	0.48	410.16	2.39
GTX 670M	4.29	3.39	29.61	0.72	119.21	12.70	0.31	167.00	5.88
GT 750M	2.73	1.99	46.61	1.14	158.05	5.53	0.19	218.61	4.49
GTX Titan Black	9.42	13.35	13.49	0.33	30.24	7.12	0.17	53.84	18.23
Quadro 2000	1.65	1.29	40.82	1.00	302.21	7.68	0.19	357.95	2.74
HD 5850	3.61	4.34	35.26	0.86	94.15	5.13	0.19	144.74	6.78
HD 7870 GE	6.21	8.52	20.71	0.51	47.60	5.07	0.12	81.58	12.03
HD 7950 Boost	8.18	13.85	15.54	0.38	29.48	6.03	0.15	58.93	16.66
HD 8970M	3.08	2.85	41.23	1.01	143.36	5.16	0.14	197.28	4.98
ESATAN TMS [*]	/	/	319.00	7.78	650.00	12.50	0.30	981.50	1.00
* Calculation All computat 28 th European S 14-15 October 2	on Intel tions on V Space The 2014, ESA	i7 940 2.9 Vindows ermal Ana /ESTEC	93 GHz; sii 7/8 64 ma Iysis Worl	ngle core ichines; to kshop	executior ools also v	n with Intel Turbo vorks on Linux	Boost, (clock set	to 3.2 G⊦ ★ ★	Iz)

Possible Improvements

- Data flow:
 - Float16 to float4 data items conversion
 - Data caching through constant memory blocks for initialization (BVH data etc.)
 - Data caching through texture units (simpler if OpenCL 1.2 is used)
- Improve BVH structure (Split BVH construction \rightarrow SBVH)
- Stack-less tracing kernel (reduce register pressure and improve the number of concurrent threads)
- Take advantage of multiple devices (multi GPU, GPU+CPU configurations)
- Evaluate different ray tracing strategies:
 - Offloading part of the ray tracing procedure to the CPU when few rays need to be traced, and leave on device only mass evaluations
 - Use device fission (OpenCL 1.2) to parallelize ray spawning and ray tracing on device, in order to maximize device occupancy

Conclusions

- CADET radiative solver is implemented and its results are consistent with the ESATAN TMS tool (considering RTMC fluctuations).
- On GPU devices, the tool use the huge computation power of GPU HW and get acceptable performances (up to 18x respect to ESATAN TMS on high end hardware).
- Additional speedup of 10x and more could be achieved improving the tool (compared to NVIDIA computer graphics rendering algorithm).
- New developers' skills are needed to maximize GPGPU performances.

28th European Space Thermal Analysis Workshop 14-15 October 2014, ESA/ESTEC Sheet 35

Bibliography

- Kay, Timothy L., and James T. Kajiya. "*Ray Tracing Complex Scenes*." SIGGRAPH Comput. Graph. 20, no. 4 (August 1986): 269–78. doi:10.1145/15886.15916.
- Fabianowski, B. "Interactive Manycore Photon Mapping." Trinity College Dublin, 2011.
- Aila, Timo, and Samuli Laine. "Understanding the Efficiency of Ray Traversal on GPUs." In Proceedings of the Conference on High Performance Graphics 2009, 145–49, 2009.
- Renard, Patrice. "6. Theoretical Background of the Radiative Module." In Thermica User Manual, 6–1 – 6–28, 1997.
- Munshi, Aaftab. "The OpenCL Specification, Version 1.1". Khronos OpenCL Working Group, June 1, 2011.
- Gaster, Benedict R. "The OpenCL C++ Wrapper API, Version 1.1". Khronos OpenCL Working Group, June 2010.
- NVIDIA Corporation. "OpenCL Programming Guide for the CUDA Architecture v4.2". NVIDIA Corporation, 2012.
- Advanced Micro Devices, Inc. "AMD OpenCL[™] Programming Guide" 2013.

Appendix M

Insight HP3 Thermal Modelling with Thermal Desktop

Asli Gencosmanoglu Luca Celotti Riccardo Nadalini (Active Space Technologies GmbH, Germany)

Abstract

The Heat-Flow and Physical Properties Probe (HP3) is an instrument package built by Deutsches Zentrum für Luft- und Raumfahrt (DLR) as a part of NASA-JPL Insight Mission (The Interior Exploration Using Seismic Investigations, Geodesy, and Heat Transport) which will investigate the interior structure and processes of Mars. The mission will be launched on a Type I trajectory to Mars in March of 2016.

The main subsystems of HP3 includes:

- Hammering mechanism , the Mole that penetrates below the Martian surface
- Support structure that houses the Mole prior to ground penetration
- Radiometer mounted on the lander
- Back-end electronics in the lander thermal enclosure

The thermal analysis and design of the HP3 Instrument for the landed phase of the mission have been performed by Active Space Technologies GmbH using Thermal Desktop and Sinda/Fluint. In the scope of the thermal analysis and design activities, the detailed thermal and geometrical models of each subsystem as well as the integrated models are created. Being composed of subsystems which are permanently mounted on the lander, deployed on the Mars surface after landing and deployed into the Martian soil, different external thermal environments are defined for each subsystem for the different phases of the mission, including the mars heating environment modelling. The detailed models are integrated on the simplified lander model and the reduced models of the subsystems are also created to be integrated into the detailed lander model.

The features of Thermal Desktop used for the different stages of the HP3 instrument thermal modelling and analysis process are presented:

- General features;
- Generation of thermal models;
- Integration of geometrical and thermal models
- Planet heating environment modelling;
- Post-processing;
- Data exchange.

- HP3 Mission and Instrument Description
- Thermal Models Created for HP3
- **Thermal Desktop General Features**
- **Generation of Thermal Models**
- Integration of Thermal Models
- Planet Heating Environment Modelling
- Post-Processing
- Data Exchange

HP3

The Heat-Flow and Physical Properties Probe (HP3):

- Instrument package built by DLR as a part of NASA-JPL Insight Mission
- Investigate the interior structure and processes of Mars
- Will be launched on a Type I trajectory to Mars in March of 2016

The main subsystems of HP3:

- Hammering mechanism , the Mole that penetrates below the Martian surface
- Support structure that houses the Mole prior to ground penetration
- Radiometer mounted on the lander
- Back-end electronics in the lander thermal enclosure

http://insight.jpl.nasa.gov/images.cfm?IM_ID=8301

Optical Property Database Edit Optical Property - AeroglazeZ306 × Edit Optical Properties Commen Set Color... Current Optical Property Database RcOptics.rco Use Properties: Basic Props for Radks and Heat Rate Ca Basic Wavele Wavelength Dependent for Radks, Basic for Heat Rate Calcu New property to add Add Solar 0.95 Edit Table... 🕅 Vs. Angle IR Em a/e ábeo 📃 Vs. Temperature 0.950 0.90 0 Edit Table... 🔲 Vs. Angle Transmissivity Specularity Edit Table... 📃 Vs. Angle 0 Edit Table... 🔲 Vs. Angle Refractive Indices Ratio: Infrarac 0.9 Edit Table... Vs. Angle Vs. Temperature Emissivity: Tran 0 Edit Table... 🔲 Vs. Angle • Optical Property Database (*.tdp) can be imported 0 Edit Table... 🔲 Vs. Angle 0 Edit Table... 🔲 Vs. Angle Transmissive Specularity from other models Refractive Indices Ratio: Wavelength, temperature and angle dependent OK Help Cancel properties can be defined (@activespace technologies

MOTORHOUSING, 1

12

Cactivespace technologies

HAMMER

- h = 1 to 2 W/m2.K for wind speeds = 0 to 5 m/sec (ref: The Mars Thermal Environment and Radiator Characterization (MTERC) Experiment Kenneth R. Johnson and David E. Brinza JPL)
- modelled with a constant convective heat transfer coeff.

Submode

Value

14

Planetary Heating Environment Orbit: T6-D02_3N_MinAirTempFullOps Vehicle positions as a function Lat/Long Input Orientation Planetary Data Solar Diffuse Sky Solar Albedo Diffuse Sky IR Ground IR ASHRAE Fast Spin of time, input as latitude, Right Ascension Definitions time [sec], latitude [deg], longitude [deg], altitude [km], z-rotation [deg]: longitude and altitude. For Over Specified 720 1620 2520 3420 4320 5220 6120 -91 -91 -91 -91 -91 -91 1.06 1.06 1.06 1.06 1.06 1.06 1.06 stationary vehicles: same values R.A. of Sun 89 at each time step) R.A. of Prime Meridian 0 Inputs can be cut/pasted from excel Orbit: T6-D02_3N_MinAirTempFullOps Lat/Long Input Orientation Planetary Data Solar Diffuse Sky Solar Albedo Diffuse Sky IR Ground IR ASHRAE Fast Spin Pointing Additional Rotations +Z Zenith Additional rotations can be X v Degrees 12 defined to account for lander Y - Degrees 🔘 +Z Sun 0 tilt ⊚ +Z Star ▼ Dec Star Right Ascension: 0 Degrees × Orbit: T6-D02_3N_MinAirTempFullOps Lat/Long Input Orientation Planetary Data Solar Diffuse Sky Solar Albedo Diffuse Sky IR Ground IR ASHRAE Fast Spin 3397.2 Radius of Planet: km Different planets options can be selected 42828.3 km^3/s^2 Gravitational Mass (GM); Inclination of Equator 25.19 Degrees Sidereal Period: 88642.6 sec (@activespace 88775.2 technologies Mean Solar Day: sec 18

	Orbit: T6-D02_3N_MinAirTempFullOps	×,
Direct Solar Diffuse Solar	Lat/Long Input Orientation Planetary Data Solar Diffuse Sky Solar Albedo Diffuse Sky IR Ground IR ASHRAE Fast Spin	
Albedo <u>Diffuse Sky IR</u> IR Planet Shine	Options Options Diffuse IR: 0 W/m^22 Input Mode:	
No shadowing effect	Use Diffuse IR vs. Time S Flux Edit Diffuse IR vs. Time Table	
 Sky IR and Planet shine can be defined as temperature or flux Ground temperature can be defined as a function of the day time Ground temperature gradients can be defined as a function of longitude and latitude 	Orbit: T6-D02_3N_MinAirTempFullOps Lat/Long Input Orientation Planetary Data Solar Dtffuse Sky Solar Abeda Dtffuse Sky IR Ground IR ASHRAE Fast Use Constant Ground IR Dtfferentiate between Night and Day Value:	Spin,

Post Processing – Model Browser

Heat Map:

Temperature List:

- The heat flow in between nodes can be listed from Model Browser, selecting the individual nodes or submodels
- The radiative and conductive heat flows are listed separately
- No visual thermal map generation, each node or submodel is displayed separately Mole.dwg

MINOSE
 MINOSE

 125310.1

 SOIL.5000
 224.7938

 SOIL.5001
 222.5613

 SOIL.5001
 222.8943

 SOIL.5003
 219.5781

 SOIL.5004
 218.5074

 SOIL.5005
 217.6215

 SOIL.5006
 216.8811

 SOIL.5006
 215.7338

Max Min Avg Total

List Edit Display Options Help

232.3014 SOIL.5325 213.15 SOIL.5584 214.2053 125310.1

26

Cactivespace technologies

- Thermal Desktop user manual
- Kenneth R. Johnson and David E. Brinza JPL 001CES-178 "The Mars Thermal Environment and Radiator Characterization (MTERC) Experiment"
- Pradeep Bhandari, Paul Karlmann, Kevin Anderson and Keith Novak Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 "CO2 Insulation for Thermal Control of the Mars Science Laboratory"

28

(Cactivespace technologies

Appendix N

Analysis Strategies For Missions Involving Comprehensive Thermal Issues

Nicolas Liquière (EPSILON, France)

Abstract

Epsilon works on projects whose complexity is expressed in different terms:

- The nature of the missions always looking for increasing performances. These induce the development of new mechanisms such as on the 3POD project, the high level of thermal stability such as on the INSIGHT mission, and high accuracy level on optical performances such as on the OTOS telescope program.
- Serious environmental constraints as for PAS instrument on the Solar Orbiter mission which directly braves the fierce Sun, and INSIGHT-SEIS instrument or Exomars-MOMA instruments which are subject to Martian environment.

All studies conducted by EPSILON on such projects require specific thermal architecture works and major modeling and simulation efforts. For each aspect, software (Systema, NX / TMG, STAR CCM + ...) is selected due to its advantages and its fit with needs.

It is proposed to walk you through some thermal problems on INSIGHT and OTOS projects, to expose how the thermal modeling and simulation problems have been managed.

- Realistic telescope attitude (tabulated data)
- A PI controller operating according to real flight conditions (algorithm, 18 second of time resolution)

Barres tripode 20 4 19 7 19

28th European Space Thermal Analysis Workshop – 14-15 Oct 2014 Page 14

FILCEN

EPSILON

FILCEN

Appendix O

Assessment of stochastic methods for the thermal design of a telecom satellite

Nicolas Donadey (AKKA Technology, France)

Jean-Paul Dudon

Patrick Connil (Thales, France) Patrick Hugonnot

Abstract

The aim of the study is to assess the interest of using probabilistic methods and tools for the thermal design of a telecom satellite. This work has been done in the frame of system development for new satellites.

In the past the interest of such methods compared to deterministic approach leading to use of margin has been pointed locally in the system. It was concluded that these methods are useful to have a more clear and complete exploration of the design and system performances, and thus to identify easily sizing parameters among many inputs. Moreover by associating an occurrence probability to system temperatures related to the dispersion law of relevant input parameters, stochastic approach is expected to avoid a final risky or oversized design.

Here we assess the feasibility of such approach at system level on a telecom satellite by benchmarking probabilistic versus margin method for a S/C communication module. The tools used for this study is OPTIMUS (stochastic methods and computation workfow) and ETHERM (TAS thermal solver)

In this purpose the classical margin approach is compared to a deterministic uncertainty analysis (RMS of cumulative incertainties on relevant parameters of the thermal design) and to a probabilistic approach (consideration of probabilistic distribution for relevant input parameters).

Methods, tools, and results are presented and current conclusions and perspectives are given considering technical and industrial objectives.

2- OBJECTIVES OF THE STUDY ThalesAlenia Space For this study the questions to solve were : Can we use the stochastic approach to assess the thermal design of a telecom spacecraft? Does it lead to a margin reduction and an increase of competitiveness compared to the margin approach? Qualification marain 0.9 Acceptance margin 99.7% (3sigma) 0.1 Uncertainties 0.7 (TCS) Design temper range (TCS) Predicted (TCS) (TCS) aes 0.6 Calculated temp. range (Nominal worst cases) Acceptance temperature range Qualification temperature range temperature range X 0.5 ñ 50% (mediane) 0.4 0.3 0.3 Calculated unit 0.1 temp. 0 х TCS performance TCS requirement THALES Thales Alenia Space

Configuration case chosen : WS EOL CONF 1-3 (worst case with regard to our goal) .

In order to minimize the data volume, we focused on one of both CM N/S panels. But results shall be similar for the other one.

			Nomenclature	Trp
		EPC	1EP403 (middle)	4766
Σ		LDLA	1CL2-08 (+x)	4786
о ч	Top 65°C	RECEIVER	1RE3-05	4707
T,		DOCON	1DC1-03	4704
٥.		BEACON	1BE2-01	4844
PAYLOAD	Top 85°C	TWT	1TE403A (+x)	4694
		OMUX	1MS502(Northern)	4140
	Bottom 85°C	TWT	1TE309B (-x)	4574
		OMUX	1MS401 (Russian)	4145
	Bottom 65°C	EPC	1EP307 (-x)	4762
	Dottoill 05 C	LDLA	1CL2-09 (x)	4796

A The	hales	sAlen) lia						3-	MET	HODO	DLOGY
		Sp c.					CON	lΡ	UTA	ATION	НҮРС	OTHESIS
Dispe Varia The a	ersion la - ECS - Doc - Inter ble inpu attached - Ex: to 0. - Ex2	aw for inp SS-E-30-F 02,07,03 mal TAS uts are gr d variatio All the El 86, each : All diss	buts (range an PART 1A : mir 35/TN5 p226 applicable do ouped by type n law is opera PC surfaces h EPC will hav ipations of the	d form) ta n/max rar (FSASTA cuments e of coatii ted in the nave an e e an emis e CM mod	aken fro nge A study f for them ng, by n e same emissivit ssivity o dule are	om : for E mal nate way ty ec of 0,8 alse	SA 2004 control (r rial, by ty to all inp qual to 0.8 36 o varied in) : I noc pe uts 35. n tł	aw f delin of c of e If th	type ig error contact, each gr nis valu ame rat	=2°C) oup e chan te	ge from 0.85
				WS EOL 1	00% Drive							
			Tmax	CON	IF 1-3		Trn					
		FPC	44.7 1F	P403 (middle)	melature		4766		VIEW	OF ETHE	RM RADI	ATIVE MODEL OF
		LDLA	44.3 10	L2-08 (+x)			4786			THE P	ANEL WI	THUNITS
	Top 65°C	RECEIVER	45.2 1R	RE3-05			4707			1		
		DOCON	44.9 1D	001-02			4704			-		
		BEACON	42.4 18	E2-01			4844					
PAYLOAD		TWT	60.7 1T	E403A (+x)			4694 2	érifier (Mat	ériau)	PX		
South CM	Top 85°C	OMUX North	orn (6ch) 54.4 1M	(150) ((1),			4140	0.95	Mode de Lége	*	TE	
		TWT	59.4 11	F309B (-x)			4140	0.77	O Decret			
	Bottom 85	°C OMUX Russia	(0ch) E6 11	401 (Russian)			4374	0.59	O Epsité			
			(9ch) 56 1N	15401 (Russian)			4145	0.41	Propriété de Mai Eps	ofriau:		
	Bottom 65	°C	32.5 IE	P307 (-x)			4762	0.05	Sous-Propriété a	le Matériauz	Et HE	
		sAlen Spa					THER	3- M/	- M	ETHC	DOL PAR/	OGY METERS
						SIGN	IA (Loi gaussienne c 02,07,035/TN5 p226)	INCERT	TUDE ECSS-E	-30-PART 1A	
				Valeur nominal	Loi de variation	(%)	Sigma	%	Fixe	Borne min	Borne max	Affectation
			Lx Ly	3,81	Normal	5	0,1905	10		3,43	4,19	Fichier cas de
		I ANNEAU GIV	Lz	1,37	Normal	5	0,0685	10		1,23	1,51	calcul plateau
			Heat-pipe/Stucture1	933,00	Normal	25	233,2500	25		700	1166	Table gop! 41
cc	NDUCTIF	CONDUCTANCE	Unit/Aluminium	1200.00	Normal	25	300.0000	25		900	1500	10010 3001 41
		CONTACT	Heat-pipe/Xing	5000,00	Normal	25	1250,0000	25		3750	6250	
			Unit/Heat-pipe	5000,00	Normal	25	1250,0000	25		3750	6250	Table CONDHP 241
			coeff*	1,00	Normal	25	0,2500	25		0,75	1,25	<u> </u>
			Eps CAMP	0,50	Normal	5	0,0250		0,03	0,47	0,53	T
			Eps E_D_R_O (Eps_085)	0,85	Normal	5	0,0425		0,03	0,82	0,88]
			Eps Z307_BEACON (Eps Z307)	0.95	Normal	5	0.0475		0.03	0 02	0 98	Table alvéole
		INTERNE	Eps Z306_TWT (Eps_Z306	0,90	Normal	5	0,0450		0,03	0,87	0,93	interne 628
			Eps NIDA	0,80	Normal	5	0,0400		0,03	0,77	0,83	_
			Eps MLI (Epsi_MLI)	0,05	Normal	5	0,0025		0,02	0,03	0,07	1

15 15

5 5

5

5

5

5 15

15

10

5

5

0,000000015

0,0008

0,0128 0,0420

0,0400

0,0350

0,0465 0,00000003

0,0016

141,8000

0,0500

0,0500

0,0000

0,0000

50

50

50

50

25 15

5 5

0,03 0,03

0,03

0,03

0,03

0,03

21,00

5,00E-08 2,50E-03

0,23 0,81 0,77

0,67 0,81

0,90 1,000E-08

5,430E-03

1397

0,75

0,85

0,95

0,95

1,50E-07 7,50E-03

0,29 0,87

0,83

0,73 0,87

0,96 3,000E-08

1,629E-02

1439

1,25

1,15

1,05

1,05

Normal

Normal

Normal Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Uniforme

Uniforme

1,0000E-07

0,0050

0,255 0,84

0,80

0,70

0,84

0,93 2,0000E-08

0,0109

1418,00

1,00

1,00

1,00

1,00

25

Beg MLI (V

ps ea M Alp OSR Eps OSR

Eps TWT

Alp TWT

Eps MLI

Alp MLI Beq MLI (W/°C,mm²)

ps_eq MLI

Equipement

Structure

Constante solaire

Table Puissance

Table Harness

EXTERNE

Ср

СМ

TOTAL

RADIATIF

EXTERNE

PUISSANCE

Table appel 2624

Table alvéole externe 1062

Table appel 2624

Cas de calcul

solaire

Table 2174*

Table 1893

Table 1888 *

Thales Alenia Space

3- METHODOLOGY

TRADITIONAL METHOD VS STOCHASTIC METHOD

TRADITIONAL APPROACH Root Mean Square (RMS)

Space

ThalesAlenia

- The traditional approach to determine uncertainty is a root mean square :
- We consider each parameter one by one as input
- For each run, all the parameters have their nominal value except the current one which have his worst value.
- For each unit the global temperature uncertainty is defined as :

$$\Delta T^{RMS}_{unit} = \sum_{k}^{25} \sqrt{\Delta T_{k}^{2}}$$

with ΔT_{k} = T unit calc. with nominal value of parameter k - T unit calc.with worst value of k

STOCHASTIC APPROACH MONTE CARLO WITH LATIN HYPERCUBE

MCS:N samples (N=1000) of K variables (K=25) are randomly produced and the thermal model is run N times with these samples.

Latin hypercube sampling (LHS) is a statistical method used to optimize efficiency of MCS and respect the initial distribution (gaussian, truncated or uniform). The range of each variable is divided into equally probable intervals.

	Thates / Fir	alesA								4- F	RESU	LTS		
										SUMMA	ARY O	F RES	JLTS	
							INCERT	ITUDE CA	LCUL MODELE	YAMAL 402 CONFI	GURATION: W	S EOL 100% Drive	CONF 1-3	
						TRAI	DITIONELLE			5	TOCHASTIC	QUE (T en °C)		
			Nemenelet	Tree	Tnominal	Incertitude:	RMS	6	50%	(médian)	97	7,5% (99%	(3sigma)
			Nomenclature	irp	°C	+ 5°C	T °C	DT	T Calculé	Ecart (Tc-Tston)	T Calculé	Ecart (Tc-Tn)	T Calculé	Ecart (Tc-Tn)
		EPC	1EP403 (middle)	4766	44,7	49,7	49,3	4,6	45,2	0,5	49,2	4,5	50,6	5,9
Σ		LDLA	1CL2-08 (+x)	4786	44,3	49,3	48,9	4,6	44,8	0,5	48,6	4,3	50,2	5,9
C L	Top 65°C	RECEIVER	1RE3-05	4707	45,3	50,3	49,9	4,6	45,8	0,5	49,9	4,6	51,2	5,9
out		DOCON	1DC1-03	4704	44,9	49,9	49,5	4,6	45,4	0,5	49,5	4,6	50,8	5,9
s		BEACON	1BE2-01	4844	42,5	47,5	47,1	4,6	43,0	0,5	46,9	4,4	48,5	6,0
	Ten 05%C	TWT	1TE403A (+x)	4694	60,7	65,7	65,9	5,2	61,1	0,4	66,0	5,3	67,3	6,6
0	10h 92.C	OMUX Northern	1MS502(Northern)	4140	54,4	59,4	59,4	5,0	54,8	0,4	59,4	5,0	61,1	6,7
V	D	TWT	1TE309B (-x)	4574	59.5	64,5	64,5	5,0	59,9	0,4	64,5	5,0	66,0	6,5
ž	Bottom 85°C	OMUX Russia	1MS401 (Russian)	4145	56,0	61,0	61,1	5,1	56,4	0,4	61,0	5,0	62,6	6,6
PA	D	EPC	1EP307 (-x)	4762	32,9	37,9	37,1	4,2	33,4	0,5	37,0	4,1	38,1	5,2
	Bottom 65°C	LDLA	1CL2-09 (x)	4796	30,0	35,0	34,3	4,4	30,5	0,5	34,2	4,2	35,6	5,6
T te th	he firs mpera at :	st targe atures w	et of the ithin a tele	stuc ecom	ly is i syste	reache m by ta	ed : p aking i	oroba into a	ability account	was ass t uncertai	ociateo nties o	d to cal n inputs.	culate It poir	d unit nts out
7	In thi	DT R s case t	MS ≈ DT : he stocha	stoc	h astiq approa	lue @9 ach doe	7.5% es not	≈ 5° allov	° C = de w to red	sign mar luce the ເ	·gin <≈ ısual m	DT@3s nargin of	igma 5°C.	

THALES Thales Alenia Space

Appendix P

Development of an automated thermal model correlation tool

Martin Trinoga (Airbus Defence and Space, Germany)

Abstract

A generally essential part in the development of a spacecraft is the implementation of a thermal model for the temperature predictions during the operation phase. In order to achieve a good accuracy of the assessed temperatures, the thermal model has to be correlated with measurements from predetermined thermal tests. Currently this correlation is only possible in a manual way at Airbus DS GmbH. As this manual method is often a time consuming process, a new method for solving this problem is currently under development. With this newly developed MATLAB® tool (TAUMEL = Tool for AUtomated Model correlation using Equation Linearization) it will be possible to correlate restricted thermal models from ESATAN-TMS automatically. The first master thesis regarding this automated approach was finished in December 2013, whose outcome will be presented. Because of the promising potential of this new correlation method, Airbus DS in Bremen is currently working within the frame of a second master thesis. The current status will be presented as well.

Fundamentals Parametric correlation

$$C_{i} \frac{dT_{i}}{dt} = \sum_{\substack{i=1\\j\neq i}}^{N} GL_{ij} PL_{ij} (T_{j} - T_{i}) + \sigma \sum_{\substack{i=1\\j\neq i}}^{N} GR_{ij} PR_{ij} (T_{j}^{4} - T_{i}^{4}) + \dot{Q}_{i}$$

Uncertainties:

□ Heat conduction $(GL_{ij} = \lambda_i \frac{A_{ij}}{d_{ij}})$: $\lambda: \pm 20\%$

□ Heat radiation (
$$GR_{ij} = A_i \varphi_{ij} \varepsilon_i \alpha_j$$
): $\varepsilon, \alpha: \pm 20\%$

□ Convection (*GF*) excluded in the current development stage

14.10.2014 4/11 EFENCE & SPACE

Image: Steps 1. Reading necessary information Display of non-recurring the time of considered in the steps 3% Image: Steps 3% Image: Steps 0. Selection of correlation method Best parameter output to Exit in the steps 0. Selection of correlation method Integrate the steps 4. Run program Integrate the steps 4. Run program Integrate the steps 0. Selection of correlation method Integrate the steps 4. Run program Integrate the steps 4. Run program Integrate the steps 0. Selection of correlation method Integrate the steps 4. Run program Integrate the steps 4. Run program Integrate the steps 0. Selection of correlation steps Integrate the steps 4. Run program Integrate the steps 4. Run program Integrate the steps 1. Selection of correlation steps Integrate the steps 1. Selection steps Integrate the steps 1. Run program Integrate the steps 1. Run program Integrate the steps 1. Selection steps Integrate the steps 1. Selectin steps I					
Terence & SPACE Results Academic test case vs. reality MAD uncorrelated 14.5K 19.6K MAD correlated 0.8K 14.8K runs 500000 - 60000 13000 - 4500	Display of non-recurring steps Best paramete output to ESATAN-TMS	(Tool for AUtomated Mod File Input Open TWD fle C. USers/Martin T Open EXCEL fle C. USers/Martin T Parametrisation Input Time for correlation 19990 Progress Validation check: Do Reading EXCEL file: Do Prepare parameter calculation: Do Prepare parameter calculation: Do C. Dy Martin T	TAUMEL Image: Control and the second sec	 Reading nectors Reading nectors Selection of a. Direct n conduct Selection of a. Direct n conduct Parame materia Display of recurring step 	eessary informatio quasi steady stat correlation method nanipulation of tors eters allocated to ls os
Small models ESC-A (15-150 nodes) K MAD uncorrelated 14.5K MAD correlated 0.8K 13000 - 4500	14.10.2014		7/11		DEFENCE & SPACE
Small models (15-150 nodes) ESC-A (~1800 nodes) MAD uncorrelated 14.5K 19.6K MAD correlated 0.8K 14.8K runs 500000 = 60000 13000 = 4500		Aca	<u>Results</u> demic test case vs. r	eality	
Small models (15-150 nodes)ESC-A (~1800 nodes)MAD uncorrelated14.5K19.6KMAD correlated0.8K14.8Kruns 500000 = 6000013000 = 4500					
Small models (15-150 nodes)ESC-A (~1800 nodes)MAD uncorrelated14.5K19.6KMAD correlated0.8K14.8Kruns 500000 = 6000013000 = 4500					
MAD uncorrelated 14.5K 19.6K MAD correlated 0.8K 14.8K runs 500000 - 60000 13000 - 4500			Small models (15-150 nodes)	ESC-A (~1800 nodes)	
MAD correlated 0.8K 14.8K runs 500000 - 60000 13000 - 4500		MAD uncorrelated	14.5K	19.6K	
		MAD correlated runs	0.8K	14.8K	

8/11 EFENCE & SPACE

14.10.2014

Appendix Q

On using quasi Newton algorithms of the Broyden class for model-to-test correlation

Jan Klement (Tesat-Spacecom GmbH & Co. KG, Germany)

Abstract

The correlation of a model with test results is a common task in thermal spacecraft engineering. Often genetic algorithms or adaptive particle swarm algorithms are used for this task. A different approach has been developed at Tesat Spacecom using quasi Newton algorithms of the class defined by C. G. Broyden in 1965. A study is performed with thermal space industry models showing the performance of this approach. By comparing it to the results of other studies it is shown that this approach reduces the number of iterations by several orders of magnitude.

PIONEERING WITH PASSION	PIONEERING WITH PASSION							
Definition of the p	aramete	ers						
\sim								
(°≠m?!?)			Ec	system to	stem to be solved:			
		7		x(a)	$\kappa(\alpha,\beta)=0$			
	T			$(\alpha, \beta) = 0$	$(\beta) = 0$			
B								
- 1-7-75-			1st	2nd	3rd	4th	5th	
α			arrow	arrow	arrow	arrow	arrow	
	parameter	α	0°					
	р	β	0°					
	target e	X	1.8m					
lllustrotion by Wiebke Klement		y	-0.711					
03.12.2014				т	esat-Spacecom (GmbH & Co. KG	2014 7	
PIONEERING WITH PASSION							ESAT PACECOM	
PIONEERING WITH PASSION	first par	rtia	l deri	vative	es		ESAT PACECOM	
PIONEERING WITH PASSION	first par	rtia	l deri	vative	es			
PIONEERING WITH PASSION	first par	rtia	l deri Δx	vative	es -1.8m			
PIONEERING WITH PASSION Calculation of the	first par	rtia	I deri $\frac{\Delta x}{\Delta \mu}$	vative $\frac{c}{3} = \frac{1.8m}{2}$	es <u>-1.8m</u> 1°	⊘ = 0 <i>m</i> / ° ≈	$\underbrace{\frac{\partial x}{\partial \beta}}_{\approx}$	
PIONEERING WITH PASSION Calculation of the	first par	rtia	I deri $\frac{\Delta x}{\Delta \mu}$	vative $\frac{x}{3} = \frac{1.8m}{-0.5m}$	$\frac{1}{1^{\circ}} = -(-0.7)n$	= 0 <i>m</i> / ° ≈	$\frac{\partial x}{\partial \beta}$	
PIONEERING WITH PASSION Calculation of the	first par	rtia	I deri $\frac{\Delta x}{\Delta \beta}$ $\frac{\Delta y}{\Delta \beta} =$	$vative}{\frac{c}{3}} = \frac{1.8m}{-0.5m}$	$\frac{1}{1^{\circ}} = \frac{-1.8m}{1^{\circ}} = \frac{-(-0.7)m}{1^{\circ}}$	$= 0m / \circ \approx$ $\frac{m}{2} = 0.2m$	ESAT $\frac{\partial x}{\partial \beta}$ $\frac{\partial x}{\partial \beta}$	
PIONEERING WITH PASSION Calculation of the	first par	rtia	I deri $\frac{\Delta x}{\Delta \beta}$ $\frac{\Delta y}{\Delta \beta} =$	$\frac{vative}{3} = \frac{1.8m}{-0.5m}$	$\frac{1}{1^{\circ}} = \frac{-(-0.7)n}{1^{\circ}}$	$= 0m / \circ \approx$ $\frac{m}{2} = 0.2m$	$\frac{\partial x}{\partial \beta}$	
PIONEERING WITH PASSION Calculation of the	first par	rtia A	I deri $\frac{\Delta x}{\Delta \beta}$ $\frac{\Delta y}{\Delta \beta} =$	$vative}{\frac{c}{3}} = \frac{1.8m}{-0.5m}$	$\frac{1}{1^{\circ}} = \frac{-(-0.7)n}{1^{\circ}}$	$= 0m / \circ \approx$ $\frac{m}{2} = 0.2m$	ESAT $\frac{\partial x}{\partial \beta}$ $\frac{\partial y}{\partial \beta}$	
PIONEERING WITH PASSION Calculation of the	first par	rtia	I deri $\frac{\Delta x}{\Delta \mu}$ $\frac{\Delta y}{\Delta \beta} =$	vative $\frac{c}{3} = \frac{1.8m}{-0.5m}$	$\frac{2-1.8m}{1^{\circ}} = \frac{-(-0.7)m}{1^{\circ}}$	$= 0m / \circ \approx$ $\frac{m}{2} = 0.2m$ 4th	ESAT $\frac{\partial x}{\partial \beta}$ $\frac{\partial y}{\partial \beta}$ 5th arrow	
PIONEERING WITH PASSION Calculation of the		rtiα	I deri $\frac{\Delta x}{\Delta \mu}$ $\frac{\Delta y}{\Delta \beta} =$ 1st arrow 0°	vative $\frac{c}{3} = \frac{1.8m}{-0.5m}$	$\frac{2-1.8m}{1^{\circ}} = \frac{-(-0.7)m}{1^{\circ}}$	$= 0m / \circ \approx$ $\frac{n}{2} = 0.2m$ 4th arrow	ESAT $\frac{\partial x}{\partial \beta}$ $\frac{\partial y}{\partial \beta}$ $\frac{\partial y}{\partial \beta}$ Sth arrow	
PIONEERING WITH PASSION Calculation of the	first par	rtiα α β	I deri $\frac{\Delta x}{\Delta \mu}$ $\frac{\Delta y}{\Delta \beta} =$ 1st arrow 0° 0°	vative $\frac{c}{3} = \frac{1.8m}{-0.5m}$ 2nd arrow 0° 1°	$\frac{2-1.8m}{1^{\circ}} = \frac{-(-0.7)m}{1^{\circ}}$ 3rd arrow	$= 0m / \circ \approx$ $\frac{n}{2} = 0.2m$ 4th arrow	ESAT $\frac{\partial x}{\partial \beta}$ $\frac{\partial y}{\partial \beta}$ 5th arrow	
PIONEERING WITH PASSION Calculation of the	first par	rtiα α β x	I deri $\frac{\Delta x}{\Delta \beta}$ $\frac{\Delta y}{\Delta \beta} =$ 1st arrow 0° 0° 1.8m	vative $\frac{c}{3} = \frac{1.8m}{-0.5m}$ 2nd arrow 0° 1° 1.8m	$e^{-1.8m}$ 1° $-(-0.7)n^{-1}$ 1° 3rd arrow	$= 0m / \circ \approx$ $\frac{n}{2} = 0.2m$ 4th arrow	ESAT $\frac{\partial x}{\partial \beta}$ $\frac{\partial y}{\partial \beta}$ 5th arrow	
PIONEERING WITH PASSION Calculation of the	first par	rtiα α β x y	$\frac{\Delta x}{\Delta \beta}$ $\frac{\Delta y}{\Delta \beta} =$ 1st arrow 0° 0° 1.8m -0.7m	vative $\frac{c}{3} = \frac{1.8m}{-0.5m}$ 2nd arrow 0° 1° 1.8m -0.5m	$e^{-1.8m}$ 1° = -(-0.7)m 1° 3rd arrow	$= 0m / \circ \approx$ $\frac{m}{2} = 0.2m$ 4th arrow	ESAT $\frac{\partial x}{\partial \beta}$ $\frac{\partial y}{\partial \beta}$ 5th arrow	
<section-header><section-header><section-header></section-header></section-header></section-header>	first par	rtiα α β x y	$\frac{\Delta x}{\Delta \beta}$ $\frac{\Delta y}{\Delta \beta} =$ 1st arrow 0° 0° 1.8m -0.7m	vative $ \frac{c}{3} = \frac{1.8m}{-0.5m} $ 2nd arrow 0° 1° 1.8m -0.5m	$e^{-1.8m}$ 1° $-(-0.7)n^{-1}$ 1° 3rd arrow	$= 0m / \circ \approx$ $\frac{m}{2} = 0.2m$ 4th $arrow$	ESAT $\frac{\partial x}{\partial \beta}$ $\frac{\partial y}{\partial \beta}$ 5th arrow	

parameters.nwk

\$LOCALS \$REALS #target cond_1=0.11; cond_2=0.12; cond_4=0.14; cond_5=0.15; cond_6=0.16; #undetermined model initial conditions cond_1=0.5; cond_2=0.5; cond_2=0.5; cond_5=0.5; cond_6=0.5; #determined model initial conditions cond_1=0.5; cond_2=0.5; cond_3=0.13; #const cond_4=0.5; cond_6=0.16; #const #overdetremined model initial conditions cond_1=0.5; cond_6=0.16; #const cond_6=0.16; #const cond_8=0.5; cond_6=0.16; #const cond_8=0.5; #const cond_8=0.5; cond_6=0.16; #const

Appendix **R**

SYSTEMA – THERMICA 4.7.0 & THERMICALC 4.7.0

Timothée Soriano Rose Nerriere (Astrium SAS, France) Abstract

SYSTEMA – THERMICA 4.7.0

The new 4.7.0 release includes new major functionalities.

A new CAD library is now embedded into SYSTEMA allowing the management of heavier CAD files. Thanks to several defeaturing options, it is possible to simplify a geometrical model with holes, chamfers and small volumes suppression. CAD shapes and SYSTEMA native shapes can then be used for thermal analysis.

A Post-Processing tab is now dedicated to the management of results. Mathematical operations, comparisons, min/max, margins, power budgets etc. can be linked together. The complete post-processing workflow can also be batched, including the generation of results into tables and graphs.

THERMICALC 4.7.0

THERMICALC is a new product of the THERMICA suite which is designed to solve small thermal problems (up to 100 nodes). It has the powerful capabilities of THERMISOL accessible from an Excel spreadsheet.

Setting and running a thermal model within THERMICALC is very easy: declaration of nodes, couplings, plus a wizard mode to help setting thermostats, temperature or time dependencies.

THERMICALC also proposes the import of THERMICA outputs (such as nodes, couplings and external fluxes) and even THERMISOL inputs.

An advanced mode may be activated so to be able to set any user's code and so to perform more complex analysis.

Long Time Support current version	V	4.5.3a	04/2014	
Next Release:		V	4.7.0	11/2014
 Integrates new major features: CAD management Post-Processing Tab Extended Python interface to all SY 	STEN	MA Tab		
Upgrade of 3D performances64bits version for Windows and Linux	File Conter Conter	edit View Go Bookm Carl Carl Carl Carl Carl Carl Carl Carl	anks Help Compared to the systema user manual The SYSTEMA main v min description	verson 4.7 : General User Interface
 And lots of evolutions and corrections: Search tool on browser, Integrated help, Archiving option, New volumic shapes, 		Introduction General User Interface Geometrical model	The SYSTEMA main window is of the Modeler the sus the Trajectory has an the Malance to be the Malance to	Internet and organic sequences and one as to create and degree procession models. The sector create and degree processions and defense managements processions and defense managements processions. The sector of the sector number of the billington lab index on an another sector of the billington lab index on an another sector of the billington lab
28th European Space Thermal Analysis Workshop - 14-15 October 2014		Kinematics tee	CVSTEMA L	

Phase 1 : Update of the CAD library

- Elysium → Japanese US company providing libraries and end-user software to perform CAD translation
- CAD file import
- Model simplification
- 3D Performances: Load CAD files beyond 200Mb

New tab integrated in SYSTEMA

- Diagram of Tool box
 - Drag&drop
 - Link
- Group definition from node id
- > Python API available

Objectives

- Ease the creation / execution of small / medium thermal analysis
 For thermal engineers / architects
 - > For space and non-space applications

Delivered with Thermisol 4.7.0

- Without additional cost
- Or as a stand-alone tool
- Posther and B-Plot are still supported

Appendix S

ESATAN Thermal Modelling Suite Product Developments and Demonstration

Chris Kirtley Nicolas Bures (ITP Engines UK Ltd, United Kingdom)

Abstract

Product Developments

ESATAN-TMS provides the Engineer with a complete and powerful integrated thermal modelling environment. Version r6 was released at the end of last year and saw a significant evolution in its modelling capability. 3D solid geometry can now be modelled, performing ray-tracing on solid surfaces and allowing selection of either lumped parameter or finite element thermal analysis on the solid structure. With ESATAN-TMS r7 the focus of work of this release has been on a number of areas, including a tighter integration between Workbench and ESATAN, improvements to the layout of the user interface and general improvements directly raised by our customers.

This presentation outlines the new features to be included in the next release of ESATAN-TMS.

Thermal Modelling Demonstration

A demonstration of the new features included in ESATAN-TMS r7 will be given, building a thermal model to demonstrate the new functionality.

- Presentation of ESATAN-TMS development status
 - Model import from CAD
 - Further thermal integration
 - Improved user interface
 - Modelling time & temperature dependency
 - Model definition
 - Simplified user input
- Followed by a demonstration

ш

Writing ESATAN-TMS file..

1974 total number of triangles 532 total number of rectangles 1008 total number of quads Conversion OK

- In r7, redesigned storage of REF, VF, HF data
- Introduce option to write radiative data directly to a new ESATAN data file
 - Introduce Analysis Case Definition (ACD) file
 - ACD file goes hand-in-hand with ESATAN analysis file
 - Store radiative (GR & Q) data in ACD file
 - Node & conductor definitions retained in analysis file
 - ACD file uses HDF5 format
 - Platform independent binary file
 - Efficient structure & format

- Leads to improved performance, reduced overall file size & reduction in memory
- Example science model provided by OHB

Generated File Size (Mb)			
ESATA	A (0/)		
r6	r7	Δ (70)	
40	18	55%	
39	6	85%	
40	13	68%	
15	6	60%	
18	5	72%	
152	48	68%	
	Size (Mb ESATA r6 40 39 40 15 18 152	Size (Mb) ESATAN-TMS r6 r7 40 18 39 6 40 13 15 6 18 5 152 48	

Deserves	ESATA	A (0/)	
Process	r6	r7	⊿ (%)
Pre-process	204	18	91%
Solution	133	67	50%
Total	337	85	75%

ESATAN-TMS thermal modelling suite	Thermal Integration
Model Tree Define Analysis Case Analysis Case: power Analysis Case Template File Boundary Conditions Analysis File Conductors Output Linear Conductors	 Workbench GUI Changes Select to output all linear conductors (default)
Radiative Exchange Factors Output REFs Output Definition Model Name GSG_Sat_power Dynamic Storage Environment Node Number 99,999 Environment Temperature -270.0 Inactive Node Number 99,998 Area Multiplying Factor 1 ESATAN SBlocks as Include Files Image: Comparison of the compar	 "Calculate Conductors" option removed
Generate ACD File ✓ ➡ File Optimisation 0.005 REF Minimum Deviation 0.005 Generate ACD File 0.005 Outputs data to the Analysis Case Definition (ACD) .acd file, rather than to the analysis file. Note: improves memory use and increases performance.	 Option to generate radiative data in Analysis Case Definition file (default)
Generate Template File Generate Analysis File Run Analysis (Pre-process & Solve) Apply Reset Close Help	
	Contonto

- Assembly
- **Define Variables**
- Cut / Combine
- Reporting Tab

SC_Properties White_Paint

cu Black Paint

thermal modelling suite	Effice Geometric Radiative Boundary Condition Conductive Interface Contact Zone Group Material Property Use Defined Conductor	roved	Model Tree Def Real: Prop1_de Dimensionality: Rows:	Interface	Variable
	Variable	Matrix	Columns:		2 🌩
		Vector		0.0	-80.0
Interface for definiti	on of			300.0	-70.0
		Coordinate		600.0	-60.0
		Integer		900.0	-50.0
hasic variable types		Logical		2000.0	0.0
Dasic variable types		Point		3000.0	-90.0
		Deal	n [3500.0	-120.0
· Course interforce for C	a a la v	Real		4000.0	-120.0
 Same interface for S 	calar.	Spin		4500.0	-120.0
		String		5000.0	-120.0
Mactor and Matrix				5500.0	-120.0
vector and matrix				6000.0	-120.0
 Edit definition throu dialog 	gh the sa	me	Import Data	Graph Reset Close 1	Help

thermal mo	odelling suite		
T AVA			Reporting Ta
SEATAN-TMS Workbench Ideal Edit Define Geometric Radiative Thermal Re Model Tree Model - S602 Model - S602 Contact Interes Contact Inte	<pre>ports UBHes Heb Vauuecico Reports Conductive_Interface Conductive_Interface Conductive_Interface Conductive_Interface Conductive Interface Conductive I</pre>	Save Clear V Autoscrol T ⊻	

- CAD Conversion
 - Shape recognition
 - Merge triangles
 - Option to generate Point Variables
- Thermal Integration
 - New Analysis Case Definition file
 - Control of output of all conductors
 - Automatically calculate conductors
 - Calculate conductors if out of date
- Redesign of dialogs
- Process Conductive Interfaces
- Reporting Tab
- Geometry New command

- Auto-completion on dialogs
- Extension of time & temperature dependency support
- Extended Copy Model
- Model Save As
- Export Complete Model
 Definition
- Define Vectors directly using literal values

Appendix T

Tests of solids implementation in ESATAN TMS R6

Olivier Frapsauce Dominique Fraioli (Airbus DS Les Mureaux, France)

Abstract

For Airbus DS Launchers development, the modelisation of the thermal phenomena inside a space vehicle needs a 3D volumic approach, in particular to represent heat transfer inside thermal protections and cavities and complex geometries. The methods based on shell elements are not well adapted to system thermal analyses. The implementation of solids in the software ESATAN TMS aims to answer to the needs of Airbus DS Vehicles Engineering.

In the frame of the development of ESATAN TMS R6 (including solids approach), Airbus DS Vehicles Engineering has tested some new functionalities for solids: volumes generation, meshing of these volumes, conductive contacts inside and between volumes (ACG), fluid/wall contacts, fluid/fluid contacts, cavities identification, radiative computations based on cavities ...

For the 28th European Space Thermal Analysis Workshop, Airbus DS Vehicles Engineering will present the results of the close collaboration between Airbus DS Vehicles Engineering and ITP Engines (ESATAN Provider) in the implementation of solids in the software ESATAN TMS R6 based on the validation test cases.

In ESATAN-TMS R6 sp2, couplings values are considered valid.

Application on the Ariane 5 EPC upper part geometry

But the implementation of anisotropy is missing.

14/15 October 2014

8

AIRBUS DEFENCE & SPACE

10

Tests of solids implementation in ESATAN TMS R6 - Airbus DS Les Mureaux

4. Tests on new ESATAN-TMS R6 functionalities

· Convective couplings

14/15 October 2014

- -Application on the Ariane 5 EPC upper part geometry
- Currently only direct convective coefficient h is available, the use of convective coefficient temperature dependent as $k \Delta T^{\alpha}$ is not available in the interface.
- · Advective couplings (fluid channels)
 - -Application on the Ariane 5 EPC upper part geometry
 - Currently only fixed value of specific heat is available in the interface (no temperature dependance).

Appendix U

Finite element model reduction for the determination of accurate conductive links and application to MTG IRS BTA

Lionel Jacques (Space Structures and Systems Laboratory, University of Liège Centre Spatial de Liège, Belgium)

> Luc Masset (Space Structures and Systems Laboratory, University of Liège, Belgium)

Tanguy ThibertPierre JamottonCoraline Dalibot(Centre Spatial de Liège, Belgium)

Gaetan Kerschen (Space Structures and Systems Laboratory, University of Liège, Belgium)

Abstract

The finite element method (FEM) is widely used in mechanical engineering, especially for space structure design. However, FEM is not yet often used for thermal engineering of space structures where the lumped parameter method (LPM) is still dominant.

The two methods offer advantages and disadvantages and the proposed global approach tries to combine both. Whereas the LPM remains very versatile and allows easy integration of user-defined components, the computation of the conductive links is error-prone and still too often computed by hand. This is incompatible with the increasing accuracy required by the thermal control systems (TCS) and associated thermal models. Besides offering the automatic and accurate computation of the conductive links, the FEM also provides easy interaction between mechanical and thermal models, allowing better thermomechanical analyses. From this point of view, the FEM is complementary, offering the accuracy required by the always more stringent requirements of the TCS. In this framework, a FE mesh conductive reduction scheme has been developed. The detailed FE mesh is first fitted to the ESARAD geometry. The FE mesh is then partitioned, according to the ESARAD shells definition, before being reduced in an iterative procedure. The reduced conductive network, containing all the conductive information of the detailed FE mesh, and the ESARAD radiative links are then combined to form the TMM and compute the temperatures. The reduction method further allows the recovery of the detailed FE mesh temperatures back from the reduced one, therefore bridging the gap between thermal and mechanical analysis. The method has been tested and applied on the Back Telescope Assembly (BTA) on board MTG IRS.

Global approach & proposed solutions

(2) Radiative links computation

- Reduce # of rays: quasi-Monte Carlo method (isocell, Halton)
- Reduce # of facets: super-face concept (mesh clustering)
- Parallelization: GPUs

(3) Surface accuracy for ray-tracing

Quadrics fitting

(1,4,5) Conductive links, thermo-mech. analysis and user-defined compts.

- Reduce detailed FE mesh (keep conductive info. of the detailed geometry)
- Able to recover detailed T° from reduced
- Transform reduced FE model to LP model to enable user-defined comp.

4
Today's topic(2) Radiative links computation Reduce # of rays: quasi-Monte Carlo method (isocell, Halton) Reduce # of facets: super-face concept (mesh clustering) Parallelization: GPUs (3) Surface accuracy for ray-tracing Quadrics fitting (1,4,5) Conductive links, thermo-mech. analysis and user-defined compts. Reduce detailed FE mesh (keep conductive info. of the detailed geometry) Able to recover detailed T° from reduced Transform reduced FE model to LP model to enable user-defined compt.

5

Outline Mesh clustering Mathematical reduction Step by step procedure Benchmarking Conclusions

Guyan (static) condensation

Split the system

 $\mathbf{KT} = \mathbf{Q}$

With retained and condensed nodes:

$$\begin{bmatrix} \mathbf{K}_{\mathrm{RR}} & \mathbf{K}_{\mathrm{RC}} \\ \mathbf{K}_{\mathrm{RC}}^{\mathrm{T}} & \mathbf{K}_{\mathrm{CC}} \end{bmatrix} \begin{bmatrix} \mathbf{T}_{\mathrm{R}} \\ \mathbf{T}_{\mathrm{C}} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{\mathrm{R}} \\ \mathbf{Q}_{\mathrm{C}} = 0 \end{bmatrix}$$

Reduced system:

$$\mathbf{K}'\mathbf{T}_{\mathrm{R}}=\mathbf{Q}'$$

With

$$\mathbf{K}' = \mathbf{K}_{\mathrm{RR}} - \mathbf{K}_{\mathrm{RC}} \mathbf{K}_{\mathrm{CC}}^{-1} \mathbf{K}_{\mathrm{RC}}^{\mathrm{T}} = \mathbf{R}^{\mathrm{T}} \mathbf{K} \mathbf{R}$$
$$\mathbf{Q}' = \mathbf{Q}_{\mathrm{R}} - \mathbf{K}_{\mathrm{RC}} \mathbf{K}_{\mathrm{CC}}^{-1} \mathbf{Q}_{\mathrm{C}} = \mathbf{R}^{\mathrm{T}} \mathbf{Q} = \mathbf{Q}_{\mathrm{R}}$$

$$\mathbf{R} = \begin{bmatrix} \mathbf{I}_{\mathrm{RR}} \\ -\mathbf{K}_{\mathrm{RC}}\mathbf{K}_{\mathrm{CC}}^{-1} \end{bmatrix}$$

Condensed temperatures can be recovered: $\mathbf{T} = \mathbf{RT}_{R}$

Create new "super-nodes"
Not picking a representative node of the cluster but creating new nodes
A super-node = weighted (area, volume) average each node cluster

$$\mathbf{T}_{SN} = \mathbf{AT}$$

$$T_{SN_i} = \sum_{j=1}^{N} A_{ij}T_j \qquad \sum_{j=1}^{N} A_{ij} = 1$$

Combining the relations

As done at element level in MSC Thermica®:

$$\begin{cases} \mathbf{K}\mathbf{T} = \mathbf{Q} \\ \mathbf{T}_{SN} = \mathbf{A}\mathbf{T} \end{cases} \Leftrightarrow \begin{bmatrix} \mathbf{K} & \mathbf{A}^{\mathrm{T}} \\ \mathbf{A} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{T} \\ \mathbf{0} \end{bmatrix} = \mathbf{M} \begin{bmatrix} \mathbf{T} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{Q} \\ \mathbf{T}_{SN} \end{bmatrix} \\ \begin{cases} \mathbf{T} \\ \mathbf{0} \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} \mathbf{Q} \\ \mathbf{T}_{SN} \end{bmatrix} = \begin{bmatrix} \mathbf{X} & \mathbf{Y}^{\mathrm{T}} \\ \mathbf{Y} & \mathbf{Z} \end{bmatrix} \begin{bmatrix} \mathbf{Q} \\ \mathbf{T}_{SN} \end{bmatrix} \\ \mathbf{Y}\mathbf{A}^{\mathrm{T}} = \mathbf{I} = \mathbf{A}\mathbf{Y}^{\mathrm{T}} \\ \mathbf{0} = \mathbf{Y}\mathbf{Q} + \mathbf{Z}\mathbf{T}_{SN} \end{cases}$$

If the load is uniform over each super-node ($\mathbf{Q} = \mathbf{A}^{T} \mathbf{Q}_{SN}$): $\mathbf{Y} \mathbf{Q} = \mathbf{Q}_{SN}$

$$-\mathbf{Z}\mathbf{T}_{\mathbf{SN}}=\mathbf{Q}_{\mathbf{SN}}$$

 $\mathbf{K}_{\mathrm{SN}} = -\mathbf{Z}$

And the detailed T° can be recovered:

$$\mathbf{T} = \mathbf{X}\mathbf{Q} + \mathbf{Y}^{\mathrm{T}}\mathbf{T}_{\mathrm{SN}}$$

13

You need to invert M to get K_{SN} !

size(M) > size(K) \rightarrow very expensive + M is not sparse!

Detailed T° not needed:

LDL decomposition of M → selective inversion of sparse matrix and only K_{SN} is computed.

Detailed T^{\circ} needed: X and Y are required (size(X)=size(K), not sparse)

- Local inversion of M for each super-node
- Global inversion for small problems.

Overall procedure

- CAD cleaning + ESARAD shells drawing
- Import .step to ESARAD
- LPM nodes numbering in ESARAD
- FE meshing cleaned CAD
- Superimposition of FE & ESARAD meshes
- FE mesh partitioning
- FE assembly and detailed K matrix computation a
- Reduction of K to K_{sn}
- Export K_{sn} and super-nodal capacitances to ESATAN
- Compute the radiative links (with ESARAD or other)
- Combine radiative + conductive links and others \rightarrow solve for T_{SN}

REFERENCES

- [1] T.D. Panczak, The failure of finite element codes for spacecraft thermal analysis, Proceedings of the International Conference on Environmental Systems, Monterey, USA, 1996.
- [2] MSC THERMICA User Manual, Version 4.5.1, 2012, ASTRI.UM.757138.ASTR

Appendix V

List of Participants

Bakker, Marije

National Aerospace Laboratory (NLR) Netherlands ☎ +31 88 511 4333 ☞ marije.bakker@nlr.nl

Bascheri, Olivier

DOREA France ☎ +33 4 92 90 08 29 ☞ olivier.bascheri@dorea.fr

Baturkin, Volodymyr

DLR Germany ☎ +49 4212 4420 1610 翊 volodymyr.baturkin@dlr.de

Bernaudin, Jean-Baptiste

Airbus Defence and Space France ☎ +33 5 62 19 64 69 ☞ jean-baptiste.bernaudin@astrium.eads.net

Bodendieck, Frank

OHB System AG Germany ☎ +49 4212 020 626 ☞ frank.bodendieck@ohb.de

Bonnafous, Bastien

ESA Netherlands ☎ +31 71 565 6288 ☞ bastien.bonnafous@esa.int

Brouquet, Henri

ITP Engines UK
United Kingdom
☎ +44 116 284 5765
☑ henri.brouquet@itp-engines.co.uk

Brunetti, Francois

DOREA France ☎ +33 4 92 90 08 29 ☞ francois.brunetti@dorea.fr

Bruno, Giordano

University of Bern Switzerland ☎ +41 79839 2249 ☑ giordano.bruno@space.unibe.ch

Bryan, Shaughnessy

STFC RAL Space
United Kingdom
☎ +44 1235 445061
☑ bryan.shaughnessy@stfc.ac.uk

Bugnon, Patrick AIRBUS DEFENCE & SPACE France ☎ +33 55 5657 3055 ☞ patrick.bugnon@astrium.eads.net

Bures, Nicolas

ITP Engines UK
United Kingdom
☎ +44 116 284 5520
☑ nicolas.bures@itp-engines.co.uk

Celotti, Luca Active Space Technologies GmbH Germany ☎ +49 30 6392 6090 ☞ luca.celotti@activespacetech.eu

Checa, Elena ESA Netherlands ☎ +31 71 565 6606 翊 Elena.Checa@esa.int

Cheriaux, Loic

AIRBUS DEFENCE & SPACE France ☎ +33 1 3906 1535 ☑ loic.cheriaux@astrium.eads.net

Dalibot, Coraline

Centre Spatial de Liège Belgium ☎ +32 47051 4794 ☞ coraline.dalibot@gmail.com

De Palo, Savino

ThalesAlenia Space Italy ☎ +39 01 1718 0875 ☑ savino.depalo@thalesaleniaspace.com

Dolce, Silvio

ESA Netherlands ☎ +31 71 565 4673 ☞ Silvio.Dolce@esa.int

Dudon, Jean-Paul

THALES
France
☎ +33 4 92 92 67 13
☑ jean-paul.dudon@thalesaleniaspace.com

Etchells, James

ESA Netherlands ☎ +31 71 565 8503 ☑ James.Etchells@esa.int

Fagot, Alain

DOREA France ☎ +33 4 92 90 08 29 ☞ alain.fagot@dorea.fr

Fernandez Rico, German

Max-Planck-Institut für Sonnensystemforschung Germany ☎ +49 551 384 979 407 ☑ fernandez@mps.mpg.de

Ferrier, Michèle

THALES ALENIA SPACE
France
☎ +33 49228 9966
☑ michele.ferrier@thalesaleniaspace.com

Fraspauce, Olivier

AIRBUS DEFENCE & SPACE France ☎ +33 1 39 06 78 72 ☞ olivier.frapsauce@astrium.eads.net

Frey, Anja

ESA Netherlands ☎ +31 71 565 5068 ☞ anja.frey@esa.int

Friso, Enrico

FRS Consulting srl Italy ☎ +39 346 753 0867 ☑ enrico.friso@gmail.com

Gencosmanoglu, Asli

Active Space Technologies GmbH Germany ☎ +49 30 6392 6058 ☞ asli.gencosmanoglu@activespacetech.eu

Gerstmeier, Michael

OHB System AG Germany ☎ +49 89 7249 5240 ☑ michael.gerstmeier@ohb.de

Hugonnot, Patrick

THALES ALENIA SPACE
France
☎ +33 6 73 56 41 10
☑ patrick.hugonnot@thalesaleniaspace.com

Hulier, Jean-Pierre

AIRBUS Defence and space France ☎ +33 13906 1984 ☑ jean-pierre.hulier@astrium.eads.net

Jacques, Lionel Centre Spatial de Liège - University of Liège Belgium ☎ +32 4 382 46 42 ☑ ljacques@ulg.ac.be

Jahn, Gerd

Airbus DS GmbH Germany ☎ +49 7545 8 3472 ☑ gerd.jahn@astrium.eads.net

Kasper, Stefan

Jena-Optronik GmbH Germany ☎ +49 3641 200 176 ☞ stefan.kasper@jena-optronik.de

Kirtley, Chris

ITP Engines UK United Kingdom ☎ +44 116 284 5653 ☞ chris.kirtley@itp-engines.co.uk

Klement, Jan

Tesat Spacecom Germany ☎ +49 719 1930 1689 ☑ Jan.Klement@tesat.de

Laine, Benoit

ESA Netherlands ☎ +31 71 565 3217 ☞ benoit.laine@esa.int

Leroy, Sandrine

DOREA France ☎ +33 4 92 90 08 29 ☞ sandrine.leroy@dorea.fr

Liquière, Nicolas

EPSILON Ingénierie France ☎ +33 561 001 929 ☞ nliquiere@epsilon-alcen.com

Maas, Alexander

Dutch Space Netherlands ☎ +31 71 524 5922 ☑ a.s.maas@dutchspace.nl

Marach, Siarhei

Peleng Belarus ☎ +37 52 9822 9413 ☞ sergeyma@open.by

Markelov, Gennady

ATG-Europe Netherlands ☎ +31 71579 5500 ☑ Gennady.Markelov@atg-europe.com

Mas, Guillaume

CNES France ☎ +33 56127 3102 ☞ guillaume.mas@cnes.fr

Mathias, Yorick

Melendo, Ignacio

AIRBUS Defense and Space Spain ☎ +34 65015 9486 ☞ ignacio.melendo@astrium.eads.net

Morgenroth, Lutz

OHB System AG Germany ☎ +49 89 7249 5109 ☞ lutz.morgenroth@ohb.de

Moroni, David

AVIO Italy ☎ +39 06 9728 5207 ☑ david.moroni@avio.com

Muenstermann, Rolf

Airbus DS GmbH Germany ☎ +49 421 539 5011 ☞ Rolf.Muenstermann@astrium.eads.net

Nadalini, Riccardo

Active Space Technologies GmbH Germany ☎ +49 30 6392 6071 ☑ riccardo.nadalini@activespacetech.com

Nerriere, Rose

Airbus Defence and Space SAS France ☎ +33 5 62 19 58 59 ☞ rose.nerriere@astrium.eads.net

Neto, Joao

Active Space Technologies GmbH Germany ☑ Joao.Neto@activespacetech.com

Oger, Patrick

AIRBUS DEFENCE & SPACE France ☎ +33 39 06 24 50 ☞ patrick.oger@astrium.eads.net

Persson, Jan

ESA Netherlands ☎ +31 71 565 3814 ☞ jan.persson@esa.int

Pfaltzgraff, Antoine

Jena-Optronik Germany ☎ +49 36 4120 0227 ☑ Antoine.Pfaltzgraff@jena-optronik.de

Pin, Olivier

ESA ESTEC Thermal Control Section Netherlands ☎ +31 71 565 5878 ☑ olivier.pin@esa.int

Rathjen, Harold

Private Germany ☎ +49 421 539 4225 ☞ JanneMarieke.Wendt@astrium.eads.net

Romera-Perez, Jose Antonio

ESA-ESTEC Netherlands ☎ +31 71 565 3979 ☑ jose.antonio.romera.perez@esa.int

Rooijackers, Harrie

ESA/ESTEC Netherlands ☎ +31 71 565 3453 ☞ Harrie.Rooijackers@esa.int

Ruzza, Paolo

CGS Compagnia Generale Spazio Italy ☎ +39 02 3804 8371 ☞ pruzza@cgspace.it

Schweikle, Salome Surrey Satellite Technology Limited United Kingdom ☎ +44 14 8334 4880 ☑ j.hart@sstl.co.uk

Simonian, Sahak Menzo (Samo)

ATG Europe Netherlands ☎ +31 6 1255 6991 ⊠ samo.simonian@atg-europe.com

Soriano, Timothée

Astrium satellites France ☎ + 33 5 62 19 91 76 ☞ timothee.soriano@astrium.eads.net

Stroom, Charles

CL&W Netherlands ☎ +31 6 4284 9092 ☞ charles@stremen.xs4all.nl

Theroude, Christophe

Airbus Defence and Space France ☎ +33 5 62 19 68 85 ☞ christophe.theroude@astrium.eads.net

Tirolien, Thierry

ESA Netherlands ☎ +31 71 565 4096 ☞ thierry.tirolien@esa.int

Torralbo, Ignacio

IDR/UPM Spain ☎ +34 65194 9800 ☞ ignacio.torralbo@upm.es

Tosetto, Andrea

BLUE Engineering Italy ☎ +39 01 1950 4259 ☞ a.tosetto@blue-group.it

Trinoga, Martin

Airbus DS GmbH Germany ☎ +49 421 539 4976 ☑ Martin.Trinoga@astrium.eads.net

Ucan, Meric

Tubitak Uzay Turkey ☎ +90 210 1310 ☑ meric.ucan@tubitak.gov.tr

Unses, Emre

TÜBİTAK UZAY Turkey ☎ +90 210 1310 ☞ emre.unses@tubitak.gov.tr

Valentini, David

THALES ALENIA SPACE
France
☎ +33 49292 7404
☑ david.valentini@thalesaleniaspace.com

Van Benthem, Roel

National Aerospace Laboratory (NLR)
Netherlands
☎ +31 88511 4231
☑ Roel.van.Benthem@nlr.nl

Van der Merwe, Daniël

Spaceteq South Africa ☎ +27 21 880 8131 ☞ nvdmerwe@spaceteq.co.za

Van Es, Johannes

National Aerospace Laboratory NLR Netherlands ☎ +31 88 511 44 44 ☑ Johannes.van.Es@nlr.nl

Vaughan, Matthew

ESA Netherlands ☎ +44 79 1306 1149 ☑ matthew.vaughan@esa.int

Warkentin, Viktor

OHB System AG Germany ☎ +49 421 2020 9742 ☞ viktor.warkentin@ohb.de

Winter, Daniel

ESA (TEC-MTV) Netherlands ☎ +31 71 565 6348 ☑ daniel.winter@esa.int

Zamboni, Andrea

SELEX ES Italy ☎ +39 654 9403 ☞ andrea.zamboni@selex-es.com