Appendix Q

ESATAN Thermal Modelling Suite Product Developments and Demonstration

Chris Kirtley Henri Brouquet (ITP Engines UK Ltd, United Kingdom)

Abstract

ESATAN-TMS provides a complete and powerful integrated thermal modelling environment. ESATAN-TMS r6 sees a major evolution of the product, with advances to its geometry modelling and 3D visualisation capabilities. This presentation outlines the developments going into the new release of the product.

A demonstration of ESATAN-TMS r6 will be given, building a model to demonstrate the new functionality.

Introduction

- ESATAN-TMS release 6 is now approved for release
- Presentation
 - Major new functionality
 - Demonstration of new functionality
 - Presentation by Astrium Launchers

Introduction

Our vision remains unchanged

- Provide a complete and effective thermal modelling environment
 - Functionality which meets customer's current & future modelling requirements
 - Provide a high-quality and fully validated product
- Efficient end-to-end integration within a multi-disciplinary engineering environment
- Backing this up with **professional** customer support services

New support Engineer: Nicolas Bures

Modelling of Solids - Introduction

- Support modelling of solid (3D) geometry
 - Jointly funded ITP / ESA Contract
 - Immediate requirement from Astrium Launchers
 - Worked with Astrium Launchers
 - Definition of requirements
 - Feedback and testing via alpha and beta releases

Modelling of Solids - Conductance

- Lumped parameter and finite element analysis supported through the Analysis Type
- Thermal network depends on the analysis type
- Lumped parameter
 - Single thermal node for each volume
 - Volume nodes connected within a solid
 - Arithmetic nodes on external faces
 - Solids connected via Conductive Interfaces

- Finite Element
 - Linear finite elements
 - Thermal nodes at each element vertices
 - Nodes connected to neighbouring nodes

Modelling of Solids - Conductance

Conductive interfaces are automatically generated

- Detects surfaces in contact
 - Geometry based
 - For LP or LP/FE no reliance on mesh congruency
 - POINT_COINCIDENT tolerance used
 - Fused by default
- Identifies interface exists
- Edit via Process Conductive Interface dialog
- Conductances calculated on output to analysis file

If clicking on the picture above does not run the movie then try opening the file 'movies/media1.html' manually.

If clicking on the picture above does not run the movie then try opening the file 'movies/media2.html' manually.

Modelling of Solids - Surface Properties

- Definition of surface properties
 - On definition of shells, individual surface properties can be defined
 - Surface 1 & Surface 2 (was Side1 & Side 2)
 - Optical, criticality, colour, label & submodel name
 - On definition of solids, the same surface properties are applied to all surfaces
 - Ability to set properties to specific surfaces is supported through the Surface Properties dialog

Modelling of Solids - Surface Properties

- Select surface(s)
 - New Surface picking mode available
 - Points, Faces, Volumes, Surfaces, Geometry, Points & Distance
 - Faces on the selected surface highlighted
 - Multiple selection of surfaces is supported
- Launch Surface Properties dialog
- Define surface properties
- Use pre-process overlays to validate the model

If clicking on the picture above does not run the movie then try opening the file 'movies/media3.html' manually.

Modelling of Solids - User-defined Conductors

- Support for User-defined Conductors
 - Introduced in ESATAN-TMS r1
 - Extended for solids & terminology
 - Links between solid & shell geometry
 - Generate thermal conductors (Conduction, Convection, Advection & Radiation)
 - Workbench to provide a complete thermal modelling environment

Modelling of Solids - Boundary Conditions

- Additional boundary condition support
 - Boundary conditions introduced within ESATAN-TMS r1
 - Extended for new terminology
 - Apply boundary conditions to surfaces & volumes
 - Extended for boundary conditions on solid geometry
 - Heat Load / Volume
 - Heat Load / Unit Volume
 - Total Volume Heat Load
 - Supported boundary conditions are:

Modelling of Solids - Boundary Conditions

- Additional boundary condition support
 - Boundary conditions introduced within ESATAN-TMS r1
 - Extended for new terminology
 - Apply boundary conditions to surfaces & volumes
 - Extended for boundary conditions on solid geometry
 - Heat Load / Volume
 - Heat Load / Unit Volume
 - Total Volume Heat Load
 - Supported boundary conditions are:

Modelling of Solids - Boundary Conditions

- Additional boundary condition support
 - Boundary conditions introduced within ESATAN-TMS r1
 - Extended for new terminology
 - Apply boundary conditions to surfaces & volumes
 - Extended for boundary conditions on solid geometry
 - Heat Load / Volume
 - Heat Load / Unit Volume
 - Total Volume Heat Load
 - Supported boundary conditions are:

Modelling of Solids - Summary

- Solid geometry
- Non-geometric Nodes & Userdefined Conductors representing cooling flow
- User-Defined Conductors modelling convection
- Finite element analysis type
- Non-regular mesh applied

- Heat load applied to surfaces & volumes
- Post-processing temperatures & surface node heat loads
- Complete model built, run & postprocessed within Workbench

Modelling of Solids - Conclusion

- Modelling of Solids, Conclusion
 - Major architectural development of the product
 - Clean & logical extension to the product
 - 3D version of the primitives
 - Supported throughout the modelling process
 - Groups, User-defined Conductors, Contact Zones, Boundary Conditions, Pre- & Post-process Radiative & Thermal, ...
 - Conclusion of ESA contract
 - Meets the immediate needs of Astrium Launchers

Radiative Cavities - Introduction

- Modelling of Radiative Cavities
 - Request from industry
 - Partition a model into cavities
 - Each cavity is radiatively isolated

- External geometry REFs depend on orbital position
- Repeat radiative analysis only if cavity's geometry or optical properties change
- Leads to more efficient thermal modelling

If clicking on the picture above does not run the movie then try opening the file 'movies/media4.html' manually.

3D Visualisation

- Visualisation is the heart of Workbench
- More & more functionality driven from the visualisation
 - Interactive model construction
 - Pre- & post-processing of data
- Complete re-write of 3D visualisation component
- Third-party high-performance graphics library
- Major architectural change
- Graphics performance significantly enhanced

If clicking on the picture above does not run the movie then try opening the file 'movies/media5.html' manually.

If clicking on the picture above does not run the movie then try opening the file 'movies/media6.html' manually.

3D Visualisation - Interactivity

- Improved highlighting mechanism
 - True highlighting of selected entities
 - Select points, faces, volumes, surfaces & geometry
- Support for multiple selection
 - Ctrl-select or box-select supported
 - Concept of current selection
 - Selection depends on picking mode
 - Dialogs updated to work with multiple selection
 - Groups dialog
 - Combine Geometry dialog
 - Process Conductive Interfaces dialog

3D Visualisation - Transparency

- Support for transparency provided
- Select geometry from model tree or visualisation
- Global transparency level
- Expose internal geometry, conductive interfaces, cavities,

If clicking on the picture above does not run the movie then try opening the file 'movies/media7.html' manually.

ESATAN-TMS r6 - Overall Conclusion

- Support for 2D and 3D geometry
 - Major architectural change
 - Clean & logical extension
 - Terminology & solids support extended through the product
 - Performed under joint ESA / ITP contract
 - Meets the primary requirements of Astrium Launchers
 - Involvement in the definition of the requirements
 - Provision of alpha & beta releases

ESATAN-TMS r6 - Overall Conclusion

- New visualisation component
 - Major architectural change
 - High-performance graphics
 - Provide platform for future developments
 - Added transparency, revised clipping plane & multiple selection

The large investment demonstrates both ESA's and ITP's continued commitment to ESATAN-TMS

Future Development

- Where are we going?
 - "Provide a complete and effective thermal modelling environment"
 - Further developments are already underway
 - Create more of the thermal model through Workbench
 - Efficient handling of the thermal data
 - Better pre- & post-processing of data, the right information at the right time of the process

Overall Conclusion

- Input through the customer survey
 - Currently processing results from recent survey
 - Thank you for your response to the survey
 - Information will be fed directly into our development plan
 - Prize winner is Bryan Shaughnessy, Head of the Thermal Engineering Department at RAL Space

