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Abstract

Recently universities and SMEs (Small and Medium Enterprises) have initiated the development of
nanosatellites because of their low cost, small size and short development time. The challenging aspects
for these satellites are their small surface area for heat dissipation due to their limited size. There is
not enough space for mounting radiators for heat dissipation. As a result thermal modeling becomes a
very important element in designing a small satellite. A generic thermal model of a CubeSat satellite is
presented in this paper. Detailed and simplified thermal models for nanosatellites have been discussed.
The detailed model takes into account all the thermal resistors associated with the respective layer while
in the simplified model the layers with similar materials have been combined together and represented
by a single thermal resistor. The thermal model of complete CubeSat has been presented. The proposed
models have been applied to CubeSat standard nanosatellite called AraMiS-C1, developed at Politecnico
di Torino. Thermal resistances measured through both models are compared and the results are in close
agreement. The absorbed power and the corresponding temperature differences between different points
of the single panel and complete satellite are measured. In order to verify the theoretical results, the
thermal resistance of the AraMiS-C1 is measured through an experimental setup. Both values are in
close agreement.
Detailed thermal model of the CubeSat panel from top to bottom is shown in figure O.1 and will be
further explained in the presentation. Simplified thermal model of the CubeSat panel from top to bottom
is shown in figure O.2 and will be further explained in the presentation.

Figure O.1: CubeSat panel cross sectional view
and detailed thermal model

Figure O.2: Panel top to bottom cross sectional
view and simplified model

Thermal model of the complete CubeSat is shown in figure O.3 and will be further explained in the
presentation.

Figure O.3: CubeSat satellite and top to bottom thermal model
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Outline
 Introduction to AraMiS project
 Thermal models 
CubeSat solar panel

o Detailed model
o Simplified model 

Two models applied to AraMiS-C1 tiles (CubePMT &CubeTCT)

 Thermal model of CubeSat
 Thermal resistance of AraMiS-C1
CubeSat model

Experimental

 Emissivity & absorption coefficient of AraMiS-C1
 Conclusion
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Introduction to AraMiS (I)
 ARAMIS
 Modular Architecture of NanoSatellites 
 Alternative to CubeSats, for larger and more demanding applications

 Modularity 
 Mechanical
 Electronic 
 Testing level
 Reduction of the overall budget

development and testing time

 LEO Satellites
 Size 
 16.5x16.5x16.5 cm3
 10x10x10 cm3

 5 years expected life

 Commercial off the Shelf (COTS)
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AraMiS-C1
 CubeSat standard nano-satellites
 Based on tiles
 Four power management tiles (CubePMT): EPS & ADCS
 Two telecommunication tiles (CubeTCT):  Antennas & RF 

subsystems
 Size 10x10x10 cm3

 Mass is 1.3kg
 Room for batteries and payload boards
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CubePMT
 CubeSat standard Power Management Tile
Dimensions 9.8 x 8.25 x 0.16 cm3

 8-layers PCB 

 Top layer : Solar panel and sun sensor

 Bottom layer : electronic subsystems

Magnetorquer coil embedded in four internal layers
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Thermal Modeling: Motivation
 Emphasis on nanosatellites (Universities & SMEs)
 Low cost

 Small size 

 Short development time

 Challenge 
 Small surface area for heat dissipation

Not enough space for mounting radiators

 Thermal modeling 
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Thermal Resistace
 Heat sources 
Generated by the satellite subsystems

Absorbed from the surrounding

 Some portion of  heat is
 Lost to the surrounding

Trapped inside the satellite 

 Trapped heat energy 
 Increases temperature of the satellite

Depends on the thermal resistance

 Suppose two materials
 Fourier’s law of heat conduction
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Thermal Modeling
 Thermal resistor representation
θ denotes thermal resistor

F represents FR4 

Cu represents copper

 Alphabets (a, b, c, d, e) represent the respective subsection and 

Numbers (1, 2, 3, 4) represent the relevant layer

For example θF-a2-3 represents the thermal resistor of FR4 
material in subsection a of layers 2 and 3
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 Suppose four layers panel
 Solar cells, Resin, FR4, Copper traces, Ground plane
 Each material has an associated thermal resistance

 Mathematical form

Top to bottom 
Detailed thermal model of CubeSat panel
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dCubFcCuaFRSSSth    //21

 Layers with similar material combined together
Assigned a single resistor

 Mathematical form

Top to bottom 
Simplified thermal model of CubeSat panel
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Top to bottom 
Resistance of CubePMT (AraMiS-C1)
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

WKSSth /59.221 Applying the Detailed Model,  

Applying the Simplified Model, WKSSth /58.221 

 CubePMT thermal resistance
 Simplified Model

Detailed Model 
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Centre to Edge
Detailed thermal model of CubeSat Panel
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Simplified Thermal Model of CubeSat Panel

Centre to Edge 
Thermal Resistance of CubePMT & CubeTCT 
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 Detailed Model

 Simplified Model, 
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CubeSat thermal model (1)
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Rails

: Centre to edge thermal resistance

: Screw thermal resistance

: Rail thermal resistance

θX-q: Equipotential surface resistance

CubeSat thermal model (II)
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   1SPPPP dCRS Solar panel is on:

 Solar panel is off: SPd
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CubeSat thermal model (III)
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Thermal Resistance of AraMiS-C1
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Theoretical Measurement using CubeSat Model
Experimental Setup

Thermal Resistor with CubeTCT
attached through aluminum tile.

Thermal model
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AraMiS-C1 Thermal Resistance
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Practical Results
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ACS: Magnetorquer Coil
 Magnetorquer coil is embedded in four internal layers

 Thermal Modeling

 Stefan-Boltzmann’s law : 

At steady state, Pd=0
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Magnetorquer Coil: Thermal Modeling
 Emissivity Measurement at Infra Red Wavelength
 Ability of a surface to emit energy by radiation

 Surfaces with different colors have different emissivity values 

 Voltage, current, temperature are captured 
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Magnetorquer Coil: Emissivity
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Parameter Value
σ 5.6703x10-8 Wm-2K-4

TI 292.34K
To 322.69K
S 0.01617m2

SL 0.003321m2

Pd 3.623W
αL 1

The resulting emissivity (α) value 0.9.
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Absorption Coefficient (a)
at Visible Light
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Parameter Value
Applied voltage (V) 14.24 V
Current (I) 700 mA
Solar power density (Pd) 1366 W/m2

CubePMT surface area (A) 0.008085 m2

 CubePMT was illuminated through a solar simulator (AM0 intensity)

 Temperature start increasing

 Temperature reached steady state (74˚C), solar simulator switched 
off.

 Voltage was applied to the magnetorquer coil,

 Increase voltage step by step, Current and temperature was 
measured.  At 74˚C, the corresponding voltage and current

The resulting emissivity (α) value 0.903

Conclusion
 Thermal resistance of CubePMT measured through detailed &  

simplified models 
 Have almost same value

 Verify the authentication of the proposed models 

 CubeSat  model was applied to AraMiS-C1 
 Theoritical & practical thermal resistance have close value 

 Varify the validity of the proposed model 
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Thank you
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