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Abstract

Recently universities and SMEs (Small and Medium Enterprises) have initiated the development of
nanosatellites because of their low cost, small size and short development time. The challenging aspects
for these satellites are their small surface area for heat dissipation due to their limited size. There is
not enough space for mounting radiators for heat dissipation. As a result thermal modeling becomes a
very important element in designing a small satellite. A generic thermal model of a CubeSat satellite is
presented in this paper. Detailed and simplified thermal models for nanosatellites have been discussed.
The detailed model takes into account all the thermal resistors associated with the respective layer while
in the simplified model the layers with similar materials have been combined together and represented
by a single thermal resistor. The thermal model of complete CubeSat has been presented. The proposed
models have been applied to CubeSat standard nanosatellite called AraMiS-C1, developed at Politecnico
di Torino. Thermal resistances measured through both models are compared and the results are in close
agreement. The absorbed power and the corresponding temperature differences between different points
of the single panel and complete satellite are measured. In order to verify the theoretical results, the
thermal resistance of the AraMiS-C1 is measured through an experimental setup. Both values are in
close agreement.
Detailed thermal model of the CubeSat panel from top to bottom is shown in figure O.1 and will be
further explained in the presentation. Simplified thermal model of the CubeSat panel from top to bottom
is shown in figure O.2 and will be further explained in the presentation.

Figure O.1: CubeSat panel cross sectional view
and detailed thermal model

Figure O.2: Panel top to bottom cross sectional
view and simplified model

Thermal model of the complete CubeSat is shown in figure O.3 and will be further explained in the
presentation.

Figure O.3: CubeSat satellite and top to bottom thermal model
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Introduction to AraMiS (I)
 ARAMIS
 Modular Architecture of NanoSatellites 
 Alternative to CubeSats, for larger and more demanding applications

 Modularity 
 Mechanical
 Electronic 
 Testing level
 Reduction of the overall budget

development and testing time

 LEO Satellites
 Size 
 16.5x16.5x16.5 cm3
 10x10x10 cm3

 5 years expected life

 Commercial off the Shelf (COTS)
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AraMiS-C1
 CubeSat standard nano-satellites
 Based on tiles
 Four power management tiles (CubePMT): EPS & ADCS
 Two telecommunication tiles (CubeTCT):  Antennas & RF 

subsystems
 Size 10x10x10 cm3

 Mass is 1.3kg
 Room for batteries and payload boards
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CubePMT
 CubeSat standard Power Management Tile
Dimensions 9.8 x 8.25 x 0.16 cm3

 8-layers PCB 

 Top layer : Solar panel and sun sensor

 Bottom layer : electronic subsystems

Magnetorquer coil embedded in four internal layers
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Thermal Modeling: Motivation
 Emphasis on nanosatellites (Universities & SMEs)
 Low cost

 Small size 

 Short development time

 Challenge 
 Small surface area for heat dissipation

Not enough space for mounting radiators

 Thermal modeling 
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Thermal Resistace
 Heat sources 
Generated by the satellite subsystems

Absorbed from the surrounding

 Some portion of  heat is
 Lost to the surrounding

Trapped inside the satellite 

 Trapped heat energy 
 Increases temperature of the satellite

Depends on the thermal resistance

 Suppose two materials
 Fourier’s law of heat conduction
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Thermal Modeling
 Thermal resistor representation
θ denotes thermal resistor

F represents FR4 

Cu represents copper

 Alphabets (a, b, c, d, e) represent the respective subsection and 

Numbers (1, 2, 3, 4) represent the relevant layer

For example θF-a2-3 represents the thermal resistor of FR4 
material in subsection a of layers 2 and 3
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 Suppose four layers panel
 Solar cells, Resin, FR4, Copper traces, Ground plane
 Each material has an associated thermal resistance

 Mathematical form

Top to bottom 
Detailed thermal model of CubeSat panel
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dCubFcCuaFRSSSth    //21

 Layers with similar material combined together
Assigned a single resistor

 Mathematical form

Top to bottom 
Simplified thermal model of CubeSat panel
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Top to bottom 
Resistance of CubePMT (AraMiS-C1)
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WKSSth /59.221 Applying the Detailed Model,  

Applying the Simplified Model, WKSSth /58.221 

 CubePMT thermal resistance
 Simplified Model

Detailed Model 

12

4_4_3_3_3_3_

2_2_2_2_1_

////)//(//

)//(//////

FCuFCuFF

FCuFFFRSCE









KhRP
Kh
RP

P
T

PT
Kh
RP

T

hK
RRdR

KhP
P

dT

RdR
Kh
P

hRK
dRRPdT

RPP
hRK

dR
KA
Ld

PddT

Td

Td

Td

T
R

d

d
R

d
d

d

TT




























4
4

4

42

2.2

.2

2

2

2

2

00

2

2


























Centre to Edge
Detailed thermal model of CubeSat Panel
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Centre to Edge
Simplified Thermal Model of CubeSat Panel

Centre to Edge 
Thermal Resistance of CubePMT & CubeTCT 
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 Simplified Model, 
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CubeSat thermal model (1)
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Rails

: Centre to edge thermal resistance

: Screw thermal resistance

: Rail thermal resistance

θX-q: Equipotential surface resistance

CubeSat thermal model (II)
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   1SPPPP dCRS Solar panel is on:

 Solar panel is off: SPd
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CubeSat thermal model (III)
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Thermal Resistance of AraMiS-C1
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Theoretical Measurement using CubeSat Model
Experimental Setup

Thermal Resistor with CubeTCT
attached through aluminum tile.

Thermal model
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AraMiS-C1 Thermal Resistance
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Practical Measurement Setup
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Practical Results
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ACS: Magnetorquer Coil
 Magnetorquer coil is embedded in four internal layers

 Thermal Modeling

 Stefan-Boltzmann’s law : 

At steady state, Pd=0
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Magnetorquer Coil: Thermal Modeling
 Emissivity Measurement at Infra Red Wavelength
 Ability of a surface to emit energy by radiation

 Surfaces with different colors have different emissivity values 

 Voltage, current, temperature are captured 
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Magnetorquer Coil: Emissivity
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Parameter Value
σ 5.6703x10-8 Wm-2K-4

TI 292.34K
To 322.69K
S 0.01617m2

SL 0.003321m2

Pd 3.623W
αL 1

The resulting emissivity (α) value 0.9.
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Absorption Coefficient (a)
at Visible Light
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Parameter Value
Applied voltage (V) 14.24 V
Current (I) 700 mA
Solar power density (Pd) 1366 W/m2

CubePMT surface area (A) 0.008085 m2

 CubePMT was illuminated through a solar simulator (AM0 intensity)

 Temperature start increasing

 Temperature reached steady state (74˚C), solar simulator switched 
off.

 Voltage was applied to the magnetorquer coil,

 Increase voltage step by step, Current and temperature was 
measured.  At 74˚C, the corresponding voltage and current

The resulting emissivity (α) value 0.903

Conclusion
 Thermal resistance of CubePMT measured through detailed &  

simplified models 
 Have almost same value

 Verify the authentication of the proposed models 

 CubeSat  model was applied to AraMiS-C1 
 Theoritical & practical thermal resistance have close value 

 Varify the validity of the proposed model 
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Thank you
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