Appendix M

THERMICA-THERMISOL 4.5.0

Timothée Soriano (EADS Astrium, France)

Abstract

Non-Grey Body Implementation

Under an ESA contract, Astrium has enhanced THERMICA-THERMISOL functionalities by implementing multi-spectral analysis. This new functionality is presented and the interest of using non-grey bodies will be demonstrated on a simple example.

Edges management in THERMISOL

In order to allow easy handling of edges, a new notion of EDGES has been implemented in THERMISOL in order to have a definition of edges corresponding to their purpose and usage, not to increase the number of thermal nodes and especially to compute automatically the conductive flux between thermal nodes.

Simplified conductive method

An extension of the RCN method leading to shape-to-shape couplings has been developed. It solves the conductive flux crossing the frontiers by using a spatial extrapolation of a linearized temperature profile between the edge and the shape's center. This method is less accurate than the RCN method itself because it assumes linear temperature and the real direction of the conductive flux is lost. However, on many cases this approximation may be sufficient and THERMICA now proposes this possibility in order to get an approximated conductive method using the classical shape-to-shape topology of couplings.

Other THERMICA Improvements

The other implemented features of the v4.5.0 concerns **Incident Angle Dependencies**, **Parametric Outputs from THERMICA** and the **Management of Coplanar Shapes** in ray-tracing computations.

SYSTEM	A			THERMICA Non-Grey Bodies			
Non-Grey Boo	dy in THEF	RMICA					
 Automatic filtering of multi-spectral / mono-spectral couplings 							
 Preserved C 	PU performa	inces:					
Industrial PDR ar	Case of 1600 nd 76 orbital p	mesh ositions					
Modules	Compu	Itation Time (se	conds)				
GR Radiative Couplings	Mono-Spectral	4 Bands 92	5 Bands 112				
QE-QA Planet Fluxes	148	176	236				
QS Solar Fluxes	261	263	277				
Total	456	531	625				
25th European Workshop on Thermal and ECLS	thanks to Software - 8-9 November 2	Computation Time contained to a n efficient multi-sp	e Increase inimum ectral Ray-Tracing				
SYSTEM	A			THERMISOL Non-Grey Bodies			
Non-Grey Body in THERMISOL							
 New Entities EPSWLB and GRWLB for wavelength dependent properties Those are valued as arrays for an easy reading and a better understanding of the data 							
 New function EPSWLBEF() to automatically update the equivalent EPS at the node's temperature 							
 CPU Time for temperature integration contained to a minimum raise 							
Industrial PDR Case with 1939 nodes, more than 92000 radiative couplings							

Industrial PDR Case with 1939 nodes, more than 92000 radiative couplings including more than 42000 wavelength dependent couplings (multi-spectral case)

Madulaa	Computation Time (seconds)		
Modules	Mono-Spectral	4 Bands	5 Bands
THERMISOL SS + TR	51	-	376
25th European Workshop on Thermal and ECLS Software 🕤 8–9 November	2011		(

SYSTEMA	THERMISOL Non-Grey Bodies						
 Example of THERMISOL language 							
<pre>\$MODEL SATWLB Declaration of Wavelength Discretizatio \$ENTITIES # Addition of wevelength dependent entities EPSWLB and GRWLE WLEANDS = 4) 0.0000000, 0.100, 10.0000, 1000000, 100000, 000; \$NODES</pre>	n						
# Geometricel Nodes Declaration of Wave	length Dependent Epsilons						
<pre>D 100165 = 'housing_MLI_ext/ExtMLI_PY ', T= 0.000, A= 1.888E+00, ALP= 0.230, EES= 0.800; D 100166 = 'housing_MLI_ext/ExtMLI_PX ', T= 0.000, A= 2.005E+00, ALP= 0.230, EES= 0.800; D 100169 = 'Separation/external_face ', T= 0.000, A= 2.232E-01, ALP= 0.900, EES=EPSWLBEF() D 100171 = 'housing_MLI_int/IntMLI_tel_PZ', T= 0.000, A= 3.729E-01, ALP= 0.900, EES=EPSWLBEF() D 100173 = 'housing_MLI_int/IntMLI_tel_PX', T= 0.000, A= 3.154E-01, ALP= 0.900, EES=EPSWLBEF() D 100174 = 'housing_MLI_int/IntMLI_tel_PX', T= 0.000, A= 8.154E-01, ALP= 0.900, EES=EPSWLBEF() D 100175 = 'housing_MLI_int/IntMLI_tel_PX', T= 0.000, A= 8.154E-01, ALP= 0.900, EES=EPSWLBEF() D 100177 = 'housing_MLI_int/IntMLI_0A_PX', T= 0.000, A= 1.065E+00, ALP= 0.420, EES=EPSWLBEF() D 100176 = 'housing_MLI_int/IntMLI_0A_PX', T= 0.000, A= 1.065E+00, ALP= 0.420, EES=EPSWLBEF() D 100177 = 'housing_MLI_int/IntMLI_0A_PX', T= 0.000, A= 1.065E+00, ALP= 0.420, EES=EPSWLBEF() D 100177 = 'housing_MLI_int/IntMLI_0A_PX', T= 0.000, A= 1.065E+00, ALP= 0.420, EES=EPSWLBEF() D 100177 = 'housing_MLI_int/IntMLI_0A_PX', T= 0.000, A= 1.065E+00, ALP= 0.420, EES=EPSWLBEF() D 100177 = 'housing_MLI_int/IntMLI_0A_PX', T= 0.000, A= 1.065E+00, ALP= 0.420, EES=EPSWLBEF() D 100177 = 'housing_MLI_int/IntMLI_0A_PX', T= 0.000, A= 1.065E+00, ALP= 0.420, EES=EPSWLBEF() D 100177 = 'housing_MLI_int/IntMLI_0A_PX', T= 0.000, A= 1.065E+00, ALP= 0.420, EES=EPSWLBEF() D 100178 = 'housing_MLI_int/IntMLI_0A_PX', T= 0.0000, A= 1.065E+00, ALP= 0.420, EES=EPSWLBEF() D 100178 = 'housing_MLI_int/IntMLI_0A_PX', T= 0.0000, A= 1.065E+00, ALP= 0.420, EES=EPSWLBEF()</pre>	<pre>EPSWLB = [0.920, 0.779, 0.720, 0.720]; EPSWLB = [0.810, 0.740, 0.660, 0.515]; EPSWLB = [0.810, 0.740, 0.660, 0.515];</pre>						
[] \$CONDUCTORS							
Declaration of Wavelength Dependent Couplings							
<pre> Couplings from node 100010 GRWLB(100010 . 100145) = 5.920884E-03, 5.225500E-03, 4.923324E-03, 4.923327E-03; GRWLB(100010 . 100151) = 3.527201E-05, 3.668320E-065, 3.725704E-05, 3.725704E-05; GRWLB(100010 . 100152) = 1.46208E0-06, 4.218896E-06, 5.053530E-06; GRWLB(100010 . 100171) = 1.462078E-06, 4.2.905637E-04, 2.905637E-04; GRWLB(100010 . 100172) = 1.716643E-04; GR (100010 . 100173) = 1.780934E-04; GRWLB(100010 . 100174) = 3.787272E-04, 3.588089E-04, 3.501261E-04; GRWLB(100010 . 100174) = 1.780934E-04; GRWLB(100010 . 100174) = 1.780934E-04; GRWLB(100010 . 100174) = 1.78094E-04; GRWLB(100010 . 100163) = 1.78094E-04; GRWLB(100010 . 100164) = 1.78094E-04; GRWLB(100010 . 100</pre>							
lJ							
SYSTENIA	THEDNALOA						

al and ECLS Software - 8-9 Nov

ASTRIUM

Co-Planar Shapes Management

- Sometimes, it has been seen that geometrical models had overlaid shapes
 The Ray-Tracing behavior is not predictable (which shape shall be impacted ???)
- The version 4.4 already tracks superposed shapes and return warnings
- Manual model corrections are often a time consuming task
- Now the 4.5 is able to correct some commonly found errors
- Errors that cannot be corrected are listed for further manual corrections

ASTRIUM

