Appendix I

ESATAN Thermal Suite Status

Chris Kirtley
(ALSTOM, United Kingdom)
Introduction

- ESATAN™ Thermal Suite, comprises
 - ESATAN™ (inc FHTS, Ablation, Fluid Property Interface)
 - ThermXL
 - ThermNV

- Present development over the year
 - ESATAN™ 9.6 Release
 - ThermXL 4.4 Release
 - ThermNV 2 & 2.2 Release
 - ESATAN™ 10 Release

- On-going developments
ESATAN™ 9.6 Release

Dec 2005

ESATAN™ 9.6

- **Enhance Scalability & Performance**
 - removal of intrinsic limits
 - target models obtained (FEM)
 - 300,000 nodes
 - 7,000,000 conductors
 - 1,000,000 arrays
 - significant improvements achieved
 - eliminate compiler memory limits
 - optimise compile & link time

- **Zero order interpolation**

- **Large number of user reported issues resolved**

ESATAN™ Scalability & Performance

- **ESATAN™ 9.6 Release**

- **Transient air-humidity analysis**
 - all single-phase routines now support air-humidity solution
 - water vapour balance
 - condensation calculation
 - CHX element extended

- **Outlet Rel. Humidity**

- **ESATAN™ Thermal Suite: Status 2006**
ThermNV 2 Releases

- Pre- and Post-Processing Network Model -

ThermNV 2

Mar 2006

Aug 2006

ThermNV 2.2

- ThermNV 2 released March 2006
 - major functionality enhancements
 - high performance pre- and post-processing environment

- ThermNV 2.2 released August 2006
 - working in batch

- To be presented in detail tomorrow by Julian

ThermXL 4.4 Release

- Network Licence Available For ThermXL -

ThermXL 4.4

Apr 2006

- Replacement of licence manager
 - allow a network licence model
 - simplifies licensing
 - single licence for the ESATAN™ Thermal Suite
 - eliminates problems experienced with existing system

- Import ESARAD 5.8 radiative data
 - post-process thermal results against the geometric model

- Improvements to the sensitivity analysis capability

- Resolution of user reported problems
ESATAN™ 10 Release

Oct 2006

ESATAN™ 10

What’s new in version 10?

- Revised architecture to support parametric analysis,
 - parametric studies
 - sensitivity analysis
 - correlation against test results
 - stochastic analysis
- Supporting Parametrics Manager GUI
- Completely rewritten ESATAN™ Training Guide
- Resolution of open user requests

- ESATAN™ 10 Announcement -

ESATAN™ 10 Release

- Parametric Analysis -

- To support parametric analysis require,
 - easy control of model parameters ✓
 - efficient & stable solvers ✓
 - output control ✓

- ESATAN™ 10 builds on these strengths and provides,
 - ability to efficiently change parameters and rerun a model
 • without re-preprocessing, compiling & linking
 - definition of study parameters to record for post-processing
 - control of data to output & frequency of output
 - traceability through the process
Overview of the modelling process

- ESATAN™ 10 Architecture -

ESATAN™ 10 Release

$PARAMETERS, PARMONLY
!INITIAL = 'varMaterials'
SCALE C: PANEL1:101 * 1.3 # scale operator
SC C: '#10-15; PANEL1:20-30' * .85
CH C: PANEL1:* = 950.0 # scale capacitance
SCALE C: PANEL1: *-ONLY * 1.2
CH QS: TopRadiator * 1.2 # alias
#
!FINAL = 'extRadiation'
#
SCALE GR: PANEL1: (*) * 1.2
SCALE GR('#10 - 25', *) * 1.2
SCALE GR(*-ONLY) * 1.2
#
!FINAL = 'varConductivity'
#
SCALE COND (2, *) * 1.2

- Parametric Analysis: Parameters File -

- existing $PARAMETERS block language forms the basis
- control of running nominal case via PARMONLY
- new SCALE command
- full ZLABEL strength
 - multiple node references
 - use of wild card
 - ONLY this sub-model
- support reference node alias
- FINAL & INITIAL cases
- flexible conductor addressing
- easy update of array data
Definition of output parameters

- comma-separated data (post-process using Microsoft® Excel)
 - \(,\text{CSV}_\text{ENTITIES} = (T:*,*Q\text{S:}'#/101 = 110')\)
 - single or multiple CSV file output
 - \(,\text{CSV}_\text{OUTPUT} = \text{MULTIPLE}\)
 - file name <model>_PARnnnn_<parameter case name>.csv

<table>
<thead>
<tr>
<th>Parameter case number</th>
<th>Parameter case name</th>
<th>Time</th>
<th>T1001</th>
<th>T1002</th>
<th>T1003</th>
<th>T1004</th>
<th>T1005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>InitRadiation.1</td>
<td>0.00E+00</td>
<td>2.92E+01</td>
<td>3.02E+01</td>
<td>3.16E+01</td>
<td>3.37E+01</td>
<td>3.71E+01</td>
</tr>
<tr>
<td>2</td>
<td>InitRadiation.2</td>
<td>0.00E+00</td>
<td>2.76E+01</td>
<td>2.86E+01</td>
<td>3.00E+01</td>
<td>3.19E+01</td>
<td>3.53E+01</td>
</tr>
<tr>
<td>3</td>
<td>InitRadiation.3</td>
<td>0.00E+00</td>
<td>2.64E+01</td>
<td>2.72E+01</td>
<td>2.86E+01</td>
<td>3.05E+01</td>
<td>3.38E+01</td>
</tr>
<tr>
<td>4</td>
<td>InitRadiation.4</td>
<td>0.00E+00</td>
<td>2.53E+01</td>
<td>2.62E+01</td>
<td>2.75E+01</td>
<td>2.93E+01</td>
<td>3.25E+01</td>
</tr>
<tr>
<td>5</td>
<td>InitRadiation.5</td>
<td>0.00E+00</td>
<td>2.44E+01</td>
<td>2.53E+01</td>
<td>2.65E+01</td>
<td>2.83E+01</td>
<td>3.15E+01</td>
</tr>
</tbody>
</table>

- Parametric Analysis: Parameters File -
Many possible applications,
 – initialisation of properties

\[
\text{CHANGE T:* = -20.10} \quad \# \text{Re-initialise all temperatures} \\
\text{CHANGE T:ANEL1:* = 30.0} \quad \# \text{Re-initialise model PANEL1}
\]

– reset control constants

\[
\# \text{Steady state model} \\
\text{CHANGE NLOOP = 1000} \quad \# \text{Reset Maximum Loop Counter} \\
\text{CHANGE DAMPT = 0.7} \quad \# \text{Run with a smaller damping factor}
\]

or for a transient model

\[
\# \text{transient model} \\
\text{CHANGE DTIMEI = 10.0} \quad \# \text{Increase initial time step} \\
\text{CHANGE TIMEND = 2350.0} \quad \# \text{Run for full orbit}
\]

- Parametric Analysis: Other Use-Cases -

Parametric analysis facility provides powerful building blocks

Supporting user interface provided
 – definition of multiple analysis cases
 • generation of parameter cases
 • Range & Series operators
 – definition of output parameters
 – control of output
 – automatic generation of Parameter File

Demonstrate through an example

- Parametrics Manager Utility -
ESATAN™ 10 Release

- PCB2 heat loads
- radiation to internal closure
- external radiation from unit top to environment
- conduction through PCB supporting links (not shown)
- conduction through to boundary Mounting Panel
- model sensitivity to internal, external radiation & conduction through links

- Parametrics Analysis: Example Model -

ESATAN™ 10 Release

- Parametrics Analysis: Example Model -
ESATAN™ 10 Release

ESATAN™ 10 Release

- Parametrics Analysis: Example Model -
ESATAN™ 10 Release

ESATAN™ 10 Developments

- Now porting ESATAN™ 10 to Linux 64
 - plan to support SUSE O/S
 - continue to support Red Hat O/S on Linux 32
 - expect to release shortly

- Further user submitted Feature Requests to be addressed
 - inc, improvement to error handling (ease of use)
Conclusion

- ESATAN 9.6 saw significant improvements to scalability & performance
- ThermXL provided as part of the ESATAN™ Thermal Suite
- ThermNV provided as part of the ESATAN™ Thermal Suite
- Flexibility of ESATAN™ ideally suited for parametric simulation
 - stochastic licence option now available
- ESATAN™ 10 builds on this, providing a powerful new architecture for running simulations