The problem to solve

- **From a detailed CAD definition of a spacecraft**
 - Engineering, architectural, mechanical...

- **...to a generated simplified geometry**
 - Equivalent for thermal analysis purpose
 - But with only a few thousand polygons
Project history (1 / 2) : Origin

- 2000 : AP203 to ESARAD converter :
 - C++,
 - Nurbs & O++ library
 - SDAI C & Steptools

- -> Limited solution :
 - AP203 parsing : only working with CATIA V4.2
 - Dependency to providers (O++, Steptools)

- Works conceptually but no operational solution

Project history (2 / 2) : Prototype

- 2004 : AP203/214 to STEP-TAS converter :
 - Hanop prototype
 - C++
 - Triangulation & OpenCascade 5.2
 - STEP-TAS & PyExpress

- Improvements :
 - AP203/214 parsing : CATIA V4 & V5, Pro*Engineer…
 - OpenSource technologies
 - Open to several thermal tools thanks to TASverter
Current project: Goals

- Start from the prototype
- Shape recognition:
 - Reduce the number of triangles
 - Transform into STEP-TAS primitive shapes (cone, cylinder, disc, paraboloid, quadrilateral, …)
- Model simplification:
 - Eliminate the non-relevant holes or fillets
 - Improve the transformation into STEP-TAS primitive shapes
- --> Industrial product

Extensions done or in development:

- Main goal:
 - Reduce the number of facets
- Approach:
 - Simplify the model

Input:

AP203/214 Files → Read the file → Simplification ex: remove Holes, fillets → Analyse the faces

If primitive shape recognized

→ Primitive TAS shape

else

→ Triangulation of the face with BRepMesh
→ Create TAS Triangles

Output:

STEP-TAS Files
Recognition of TAS primitive shapes (1)

• Definition of the thermal faces:

• Approach:
 – For each face, find the surface’s type: (Planar, cylindrical, spherical, conical surface)
 – Analyse the edge loops if necessary
 – Find the corresponding TAS primitive shape if there is one

• Validation in progress with Baghera View

• Demonstration…

Remove holes

• The holes:
 Remove holes which are irrelevant for thermal analysis

• In the application:
 The user can specify:
 • If we remove or not the holes
 • If we remove or not the cylinders of the holes
 • The characteristic length threshold of the holes to remove (ex: diameter for a circular hole).
Remove Holes

Without removing holes: 8646 elements

After removing small holes: 1046 elements

Remove Fillets

- The fillets
 Often defined by a piece of cylinder.

- Algorithm:
 1- Detect the cylinder and the adjacent faces
 2- If it's a fillet:
 - find the new points of intersection.
 - modify the model (remove the cylinder and join the faces composing the fillet).

- Optional in the application.
Remove Fillets

- Detect a fillet
 (example in 2D):
 - Condition of detection:
 - Adjacent curves are lines
 - Adjacent lines tangent to the piece of circle (in A and B)
 - No cusp in A and B

Without removing fillets: 449 elements
After removing fillets: 263 elements
Current project: current and future functionalities

- Current algorithms: number of polygons divided by ~8
- To be done:
 - Removing small objects (ex: bolts..)
 - Reducing a thin plate (box) to a shell with a notional thickness
 - Large scale models validation
 - STEP-TAS 5.3 / Expressik
 - GUI for launching the converter
 - Foreseen changes reporting (colored geometry)
 - Improved triangulation (specific ESARAD/Alstom extension)

Improved triangulation with ESARAD

Standard BrepMesh

Improved meshing for analysis
Current project: Configuration

- OS: Windows 2000 / XP, Sun Solaris 2.8, Linux RedHat Entreprise 2.1
- Compilers: Visual C++ 6.0 & 7.0, Sun Forte 6, gcc 3.4.1
- OpenCascade 5.2
- STEP-TAS release February 2004 / PyExpress

Summary: A new architecture

- STEP-TAS (EXPRESS)
- PyExpress/ExpressikGenerator
- AP203/214 Files
- ESARAD
- THERMICA
- CORATHERM
- STEP-TAS C++ Library
- STEP-TAS Converter
- Open Cascade Library
- Step-TAS Files
- STEP-TAS Python Library
- TASVerter ESARAD
- TASVerter THERMICA
- TASVerter CORATHERM
- Baghera View V3
- CATIA...
- AP203/214 Files
Thank you for your attention

• Contacts
 – INCKA
 • Olivier Pailles: olivier.pailles@incka.net
 – HANOP
 • Eric Lebègue: eric.lebeque@hanop.net
 • Elisa Ciuti: elisa.ciuti@hanop.net
 – ESA/ESTEC
 • Hans-Peter De Koning: hans-peter.de.koning@esa.int