

Fachgebiet Numerische Berechnungsverfahren im Maschinenbau	
Thermal Analysis of the Solar Telescope GREGOR	TECHNISCHE UNIVERSITÄT DARMSTADT
Thermal Requirements	
The telescope structure and the main mirrors are expected to be heated up by a solar radiation of 750 through 1100 W/m ² depending on the time of day.	
 The mechanical structure must maintain a minimal temperature deviation in order not to introduce thermal inhomogeneity of ambient air ("internal seeing"). 	
 The telescope structure shall therefore maintain a temperature deviation to the ambient air within -0.5K through +0.2K by passive means. 	
Use of reflecting sun-shields which are thermally isolated from the remaining structure to improve the thermal behaviour of the main structure.	
The main mirror requires an active thermal control to maintain its surface temperature within given limits from the temperature of the ambient air.	
■ Temperature difference △T of less than 2K from ambient temperature with an accuracy of ± 0.1K across the mirror surface.	
4 T. Bornkessel & M. Schäfer , www.fnb.tu-darmstadt.de	05.10.2004

Fachgebiet Numerische Berechnungsverfahren im Maschinenbau	
Thermal Analysis of the Solar Telescope GREGOR	TECHNISCHE UNIVERSITÄT DARMSTADT
Thermal Design Features	
Sun-shields at all surfaces directly exposed to the sunlight.	
 Largely open steel truss structure allowing the wind to go through and to cause air turbulences and thus contributing to the avoidance of internal seeing. 	
 Surface coatings: 	
 Ti0₂ paint on sun-shields; high emissivity in the infrared domain Metallic foil on Serruier struts 	
Paint with low infrared emissivity on remaining structure	
 The Cesic main mirror is actively cooled by a nozzle system of six integrated cooling segments. Each nozzle cools one triangular cell of the primary mirror rear side by conditioned air. 	
5 T. Bornkessel & M. Schäfer, www.fnb.tu-darmstadt.de	05.10.2004

Fachgebiet Numerische Berechnungsverfahren im Maschinenbau	
Thermal Analysis of the Solar Telescope GREGOR	TECHNISCHE UNIVERSITÄT DARMSTADT
Thermal Analysis	
 The analysis was performed with the finite element program ANSYS using a detailed finite element model of the telescope and of the environment. 	
 Due to the fact that the used program can not consider the wavelength dependence of the emissivities the analysis was only performed in the infrared domain. 	
 The finite element model contains all structural parts and optical elements which are necessary for a realistic thermal analysis of the whole structure. 	
 The absorbed heat flux of the sun-shields was applied as thermal load with 15 percent of the relevant sun radiation 	
 The analysis considers the heat conduction in the telescope structure, the convection between the telescope structure and the ambient air, the radiation heat transfer between the telescope structure and the environment (earth and cold sky) and between the telescope's structural parts as well. 	
6 T. Bornkessel & M. Schäfer, www.fnb.tu-darmstadt.de	05.10.2004

	Fachgebiet Numerische Berechnungsverfahren				TF
-	Thermal Anal	ysis of the Solar T	elescope GREGO	R	
Mate	rials				
■ Tele	scope structur	e is made of steel: st	andard material par	ameters	
	•	elds: standard materi	•		
	ssivity coefficie				
	Emissivity	Paint Steel Structure	Titan dioxide Sun-Shields	Reflecting Foil Serrurier Struts	
	[€] IR	0, 25	0,91	0,1	
■ Sky	-			/m²	
		s => heat coefficient			
■ Hea	d velocity: 4 m/				

Fachgebiet Numerische Berechnungsverfahren im Maschinenbau	
Thermal Analysis of the Solar Telescope GREGOR	TECHNISCHE UNIVERSITÄT DARMSTADT
Conclusion and Outlook	
 The temperature of all structural parts is within a range of approximately 284.7 and 288.1K. The highest calculated structural temperature is 0.1K above the ambient temperature of 288K and thus fully within the requirement of +0.2K. 	
The lowest temperatures can be found on the sun-shields.	
 The top ring and the Serrurier struts which are in the critical path of the light are due the selected surface coatings also within the required temperature range of not more than 0.5K below the ambient temperature. 	
 The small temperature gradient across the struts has a negligible influence on the pointing of the telescope. 	
First light at the beginning of 2005.	
Temperature measurements to verify the numerical results.	
12 T. Bornkessel & M. Schäfer , www.fnb.tu-darmstadt.de	05.10.2004