Harmonization of Thermal and Space Environment Analysis Software

Reinhard Schlitt, OHB System AG
Hans Peter de Koning, ESA / ESTEC

• Overview
 – Background of ESTEC Harmonisation Activity
 – Present Situation and Need for Action
 – Inauguration of Steering Board
 • Objectives, list of members, working procedures
 • First Steering Board Meeting
 • Intended activity roadmap and actions
• **Background of Harmonization Activity**
 – T&SE Tools Harmonization Roadmap was presented on December 4 + 5, 2002 to National Delegations (A, CND, DK, F, D, N, S, CH, GB were present)
 – Consensus reached that
 • Standardized model data exchange is of primary importance
 • T&SE tools are essential for space product development.
 • Long term availability of such tools is of strategic importance for European Space Industry.

– **Conclusions / Actions**
 • (1) Continue with present program of activities for data exchange standards
 • (2) Establish a „Steering Board“ involving the user community
 – Clear mandate, but following existing ESA rules
 – Study existing solutions, cost benefit of new components, Open Source S/W
 – Define architecture and interfaces of a European library of S/W components to build thermal and space environment analysis tools
 – Recommend Go / No-Go decisions for development/implementation
 • (3) Maintain existing tools until equivalent (better?) tools are available and/or required by running / planned ESA projects
• Present Situation and Need for Action
 – Many thermal S/W tools are existing, which are sometimes similar or have overlapping functionalities
 – Obviously no easy way to counteract this development
 • Quotation from a 1994 ESA study:
 – „There are a great many S/W tools in use for space-related thermal engineering, but many of them are monolithic, not easily extendible and have overlaps in functionality, leading to a lot of functional redundancy and extra maintenance effort“

 The situation 10 years later has not changed or is even worse

– Selection of existing and future tools:
 • ESATAN, THERMICA, ALTAN, TOPIC, ARTIFIS, CORATHERM, GAETAN, Condor, ThermXL, Cat (CAP and Power) and many more…
 • And more to come: Concept Design Tool, ESATAP, THERMOSS …
 • Immediate consequence: Data exchange tools are needed and under development: STEP-TAS, STEP-NRF, STEP-SPE, SET-ATS, TASVERTER…
 • Interesting to observe: A mandatory exchange tool between SINDA and ESATAN is yet missing
- This situation is very surprising and not easy to understand
- T&SE tools are more or less non-commercial in nature due to the small user group (specialization in space engineering)
- In many cases they are developed and maintained by public funding. But then: Why so many tools??
- There are probably two main reasons for this situation:
 - System companies develop own tools (sometimes supported by national agencies) with the intention to reach a competitive edge in the space market
 - Developments in ESA and national agencies sometimes not sufficiently based on user requirements

- Development at System Companies
 - Development of own engineering tools is based on a wide-spread misconception that own tools improve an industry’s competitiveness. The contrary is the case:
 - Development of engineering tools cost invest budget and development resources
 - Maintenance difficult and costly, developers may leave the company
 - For tools developed for a certain project: What happens after termination of the project?
 - More important: System companies need to share data and recourses with subcontractors, which would not have the same software (also system companies are currently merging)
 - As consequence data conversion tools need to be developed, which again are costly and use valuable resources
• Automotive industry as a good example: Competing companies are sitting together in an effort to harmonize true commercial engineering tools, in order to facilitates data exchange with common suppliers
• European space industry moves in the opposite direction: With no realistic need different tools are produced, which need then to be harmonized by costly data exchange tools!
 – Tool Development at ESA and National Agencies (public funding):
 • Several tools have been developed, which could not be successfully introduced into the user community
 • Probable reasons:
 – User community was not really involved in the beginning and during definition of requirements
 – “Marketing” of ready products was not sufficient
 – There is a certain reluctance at companies to get involved in new S/W, because of personnel training, compatibility with existing tool infrastructure…
 Let’s continue with what we have!

• The need for a “Steering Board“ (SB)
 – One important objective of the SB is to involve the user community from the beginning of a tool development

 • SB sets priorities for short / long term development
 • Defines user requirement road map
 • ESA transforms SB results into competitive ITT’s
 • Tool development in industry (preferably system company with S/W developer as subcontractor)
 • SB declares successful development as standard tool
 • IPR with ESA
• The need for a “Steering Board“ (cont.)
 – We possibly need to change the way how we develop engineering tools

 The primary rule should be:
 To develop thermal engineering tools for the user community (and not solely for the customer)

 • Developing contractors should therefore be requested
 – to communicate with the user community via a mailing list
 – to inform the community on the progress and ask for comments, discuss requirements
 – to have users test the S/W before delivery
 – to preferably use a web based information system, etc.

• Major board assignments
 • Increase user community involvement in S/W tool development
 • Conceive a concept for a common thermal / environmental S/W architecture, which is modular for selective application and successive development
 • Ensure modular architecture to define individual tasks for short / long term development
 • Implement existing and to be developed S/W for use by the entire community
 • Regulate maintenance
 • Convince companies to use common tools, which fulfill user requirements, in lieu of proprietary engineering tools
 • Care to avoid duplication. There should be only one tool for a certain functionality in this non-commercial environment
• Major board assignments (cont.)
 • Represent the user community (although not all users are members of the board)
 • Have the mandate to declare a certain tool as an engineering standard for the ESA user community.
 • Users shall preferably commit themselves to apply such tools
 • Ensure that relevant ESA ITT’S are based on Board decisions

• Organization of the Board
 – The SB consists of representatives of the T&SE user community from ESA member states
 – The SB has now 14 voting members and 8 observers
 – Members are balanced between Prime-Contractors (4), SME (3), Research Institutes (3), Agencies (4)
 – Observers are Prime-Contractors (3), Agencies (4), S/W Developer (1)
 – S/W developers are non-voting members and have status of observers
 – Voting members shall not be guided by company interests, but by the overall objective to establish autonomous European capabilities to improve competitiveness and quality
 – Members have selected R. Schlitt as Chairperson and H. P. de Koning as ESA Secretary
 – Board decisions are taken by majority voting of present voting members
• Board Tasks
 – The SB analyses and decides on major strategic items, including
 • User requirements
 • Development options
 • Strategy and coordination
 • Priorities
 • Interfaces
 • Maintenance
 • Distribution and support
 – The SB extends and/or amends board rules by a 2/3 majority of the voting members

• Executive Team
 – The SB has nominated an Executive Team (ET) consisting of three SB members (Hans Peter de Koning [ESA], Eric Werling [CNES], Darius Nikanpour [CSA])
 – The ET performs the day-to-day management of running activities

• Board Mandate
 – Mandated to take all decisions concerning developments of future T&SE analysis software (based on ESA’s infrastructure budget)
 – ESA will make best effort to ensure implementation of decisions taken by the SB (the SB has formally no budget authority)
• First Study
 – The final Harmonization meeting agreed on an initial study phase to define a development road map, which addresses the following:
 • Identify and list existing solutions and products
 • Conduct a cost benefit analysis for components and/or blocks to be developed
 • Investigate the applicability of the OSS methodology
 • Estimate total cost to completion and yearly maintenance costs
 • Establish schedule and priorities
 • Establish methodology for distribution and maintenance
 – The task shall be performed as a Business Case Study
 • SOW to be established by the ET
 • Contract in DN to ASTRIUM (D, FN) and Eta_Max (D)
 – Next meeting of the SB takes place in November 03

<table>
<thead>
<tr>
<th>first_name</th>
<th>last_name</th>
<th>affiliation</th>
<th>country</th>
<th>discipline</th>
<th>voting</th>
<th>remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrick</td>
<td>Hugonnet</td>
<td>Alcatel Space INES</td>
<td>France</td>
<td>thermal</td>
<td>Prime</td>
<td>contractor</td>
</tr>
<tr>
<td>Valter</td>
<td>Perotto</td>
<td>Aenia Spazio</td>
<td>Italy</td>
<td>thermal</td>
<td>Prime</td>
<td>contractor</td>
</tr>
<tr>
<td>Burkhard</td>
<td>Behrens</td>
<td>Astrium GmbH T</td>
<td>Germany</td>
<td>thermal</td>
<td>Prime</td>
<td>contractor</td>
</tr>
<tr>
<td>Markus</td>
<td>Huchler</td>
<td>Astrium GmbH T</td>
<td>Germany</td>
<td>thermal</td>
<td>Prime</td>
<td>contractor</td>
</tr>
<tr>
<td>Andrea</td>
<td>Robson</td>
<td>Asstrum Ltd.</td>
<td>UK</td>
<td>thermal</td>
<td>Prime</td>
<td>contractor</td>
</tr>
<tr>
<td>Philipp</td>
<td>Chéou-Dumas</td>
<td>Astrium SAS</td>
<td>France</td>
<td>thermal + space environment</td>
<td>Prime</td>
<td>contractor</td>
</tr>
<tr>
<td>Christian</td>
<td>Vettore</td>
<td>Carlo Gavazzoli</td>
<td>Italy</td>
<td>thermal</td>
<td>SME</td>
<td></td>
</tr>
<tr>
<td>Eric</td>
<td>Wehring</td>
<td>CNES</td>
<td>France</td>
<td>thermal</td>
<td>Agency</td>
<td></td>
</tr>
<tr>
<td>Darius</td>
<td>Nikanpou</td>
<td>CSAS</td>
<td>Canada</td>
<td>thermal</td>
<td>Agency</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td>Sorensen</td>
<td>ESA TOS-CMA</td>
<td>Italy</td>
<td>space, environment</td>
<td>Agency</td>
<td></td>
</tr>
<tr>
<td>Hans Peter</td>
<td>de Koning</td>
<td>ESA TOS-MCV</td>
<td>Germany</td>
<td>thermal</td>
<td>Agency</td>
<td></td>
</tr>
<tr>
<td>Holger</td>
<td>Sdunus</td>
<td>eta_max</td>
<td>Germany</td>
<td>space, environment</td>
<td>SME</td>
<td></td>
</tr>
<tr>
<td>Reinhard</td>
<td>Schittk</td>
<td>QIB System</td>
<td>Germany</td>
<td>thermal</td>
<td>SME</td>
<td></td>
</tr>
<tr>
<td>Jean-François</td>
<td>Roussel</td>
<td>One ra</td>
<td>France</td>
<td>space, environment</td>
<td>Research institute</td>
<td></td>
</tr>
<tr>
<td>Peter</td>
<td>Truscott</td>
<td>QinetiQ</td>
<td>UK</td>
<td>space, environment</td>
<td>Research institute</td>
<td></td>
</tr>
<tr>
<td>Bryan</td>
<td>Shaughey</td>
<td>Rutherford App Lenton Lab’s</td>
<td>UK</td>
<td>thermal</td>
<td>Research institute</td>
<td></td>
</tr>
</tbody>
</table>
Board Observing Members

<table>
<thead>
<tr>
<th>first_name</th>
<th>last_name</th>
<th>affiliation</th>
<th>country</th>
<th>discipline</th>
<th>observer</th>
<th>remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markus</td>
<td>Buchler</td>
<td>Astrium GmbH</td>
<td>Germany</td>
<td>thermal</td>
<td>Prime</td>
<td></td>
</tr>
<tr>
<td>Andrew</td>
<td>Robinson</td>
<td>Astrium Ltd.</td>
<td>UK</td>
<td>thermal</td>
<td>Prime</td>
<td></td>
</tr>
<tr>
<td>Philippe</td>
<td>Chéreau-Du mas</td>
<td>Astrium SAS</td>
<td>France</td>
<td>thermal + space environment</td>
<td>2 Prime</td>
<td></td>
</tr>
<tr>
<td>Pierre</td>
<td>Bouquet</td>
<td>CNES</td>
<td>France</td>
<td>space environment</td>
<td>Agency</td>
<td></td>
</tr>
<tr>
<td>Luca</td>
<td>Maresi</td>
<td>ESA IMT-TH</td>
<td>France</td>
<td>technology</td>
<td>Agency</td>
<td></td>
</tr>
<tr>
<td>Eamonn</td>
<td>Daly</td>
<td>ESA TOS-EMA</td>
<td>France</td>
<td>space environment</td>
<td>Agency</td>
<td></td>
</tr>
<tr>
<td>Charles</td>
<td>Stroom</td>
<td>ESA TOS-MCV</td>
<td>France</td>
<td>thermal</td>
<td>Agency</td>
<td></td>
</tr>
<tr>
<td>Kevin</td>
<td>Duffy</td>
<td>Maya Heat Transfer</td>
<td>Canada</td>
<td>thermal</td>
<td>Deve loper</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>total 8</td>
</tr>
</tbody>
</table>

21.- 22.10.2003
17th Thermal and ECLS Software Workshop