CAD-FE integration using Open Source Software
Christian Caillet
c-caillet@opencascade.com

1st need: «multi-physics»

- **To improve efficiency**
 - Time request to build data card?
- **To simplify multi-physics**
 - Computation schema?
- **To simplify user training**
 - User friendly?

- Strategic
- high level of Innovation
- Large investment

To focus R&D on the core competency
Optimize the investment
2nd need: « more simulation »

- Specific simulation solution within standard CAD solutions
 - Efficient Pre/Post processor
 - Mesh for CAD solution
 - Simulation data within PDM system

CAD / FE optimized integration

- Availability of standard formats and expertise in direct interfaces
- Integration of meshing algorithms and CAD / meshing associativity
- Trade-specific solution based on OCC
- Direct definition of attributes on the geometric model. Persistency of the attribute / geometry links with OCAF
- Shape healing module and access to geometric modeling algorithms
CAD-FE INTEGRATION REFERENCES

Industrial projects achieved, based on Open Source Software

SALOME

Open Source CAD-FE integration platform to build specific simulation solutions
TECHNICAL CHOICES

- **Standards adoption**
 - Operating system
 - Software architecture
 - CAD data interface

- **Open Source adoption**
 - http://www.opencascade.org
 - re-use of approval Open Source component:

```
| Python | VTK | Open CASCADE | Q | omniORB | HDF |
```

DEVELOPMENT CONSTRAINTS

- **Portable**
 - Portable source code
 - Support of Linux (development), Windows, Unix

- **User friendly**
 - Look&Feel
 - Heavy model
 - component approach
2 MAIN FEATURES

♦ CAD-FE Integration
 ♦ CAD interface and Correction
 ♦ Idealization of CAD Model
 ♦ Basic CAD modeling features
 ♦ CAD-MESH associativity
 ♦ FE properties assigned on CAD model

♦ Coupled/Multi-physics problems
 ♦ Same user interface
 ♦ Computational schema
 ♦ Distributed computation
 ♦ Exchange format (MED)
SOFTWARE ARCHITECTURE

Graphical User Interface

GEOMETRY MESH DATA SUPERV POST-PRO

STUDY
KERNEL

Graphical 2D et 3D

MED

Persistant Model

EFFORT ENGAGED

♦ Know-how of 9 partners

♦ Resources / 2 years (Sept-2000, Sept-2002)
 ♦ 540 man.months
 ♦ Around 50 people

♦ Has received RNTL label
TRADITIONAL IT DEVELOPMENT PROCESS

Software vendor

R&D Proprietary

Industrialization

Service provider

Integration

Incomes

License, training, support

Consulting, Customization

NEW IT DEVELOPMENT PROCESS

Platform collaborative projects

R&D OpenSource.org

Software vendor

Industrialization

Service provider

Integration

Licenses

Consulting, training, support, customization
PARTNERS MOTIVATION

To focus their R&D investment on their core competency

SALOME Project

www.opencascade.com
Christian Caillet

PARTNERS ROLE

www.opencascade.com
Christian Caillet
SALOME BENEFITS

♦ Improved CAD / FE integration and process
 ♦ Geometry ready to be meshed by automatic algorithms
 ♦ Time reduction for meshing modifications
 ♦ Openness to any type of physics, and multi-physics

♦ End-user Productivity
 ♦ Modern technology
 ♦ Scripting language

♦ Independence from a software vendor’s policy
 ♦ Open Source and service approach
 ♦ No run time fee associated with the use of the technology
 ♦ Keep control of the development strategy

EFFORT : 23 partners

- Project Management / Open Source / CAD
- Standards / STEP
- Numerical Simulation

Partners:
- CEA
- EADS
- EDF
- CSTB
- ESI Group
- Université de Paris-Saclay
- IRISA
- ENSTA
- INRIA