TRANSIENT CAPILLARY PUMPED LOOP MODELLING WITH ESATAN/FHTS AND SINDA/FLUINT

Christian PUILLET, Hugo MAMEDE FIGUEIREDO

C.N.E.S.
Département Thermique
DTS / AE / MTE / TH
18, avenue Edouard Belin, F-31401 TOULOUSE cedex 04, France
christian.puillet@cnes.fr

CONTENTS

• CAPILLARY PUMPED LOOP PRESENTATION
• OBJECTIVES
• MODEL PRESENTATION
• MODELS WITH MECHANICAL PUMPS
• MODELS WITH CAPILLARY PUMPS
• TEMPERATURE RESULTS
• INFLUENCE OF NUMBER OF NODES
• ANALYSIS
• CONCLUSION
CNES/MMS 5kW AMMONIA CAPILLARY PUMPED LOOP

5 CAPILLARY EVAPORATORS
4 CONDENSERS (IN PARALLEL)
1 VAPOUR LINE
1 LIQUID LINE
1 TWO-PHASE RESERVOIR

CAPILLARY EVAPORATOR PRINCIPLE

LIQUID INLET → POROUS MATERIAL → VAPOUR OUTLET

LIQUID → VAPOUR CHANNEL → POROUS MATERIAL → LIQUID

0.05 to 0.5 m

10 to 40 mm
OBJECTIVES

- START-UP MODEL OF 1st EVAPORATOR FROM FULLY FLOADED LOOP. DEVELOPED IN MID 90’s USING MECHANICAL PUMPS AND VALVES.

- MODEL CONVERTED IN ESATAN/FHTS IN 99, PRESENTED AT 13th EWTES.

- REMAINING ISSUES:
 - USE OF FHTS CAPILLARY ELEMENTS
 - COMPARISON WITH SINDA/FLUINT

- OBJECTIVE:
 - TO EVALUATE ESATAN/FHTS CAPILLARY ELEMENTS
 - TO GET A MODEL SIMPLER AND MORE PRACTICAL TO USE

- MAINS POINTS:
 - FLUID TIME CONSTANTS (little solid inertia)
 - EVAPORATORS CLEARING (EVAP. 2 TO 5)
 - VAPOUR FRONT DISPLACEMENT

MODEL

VAPOUR LINE
- Convective coupling with air
- Global pressure drop

CONDENSER
- Cooling loop @ 0°C

LIQUID LINE
- Convective coupling with air

PRESSURISER
- Heater with prop. regulation

MODEL GEOMETRY CORRECTED
MECHANICAL PUMPS MODELLING AS CLOSE AS POSSIBLE TO CAPILLARY PUMPS
SINDA/FLUINT WITH MECHANICAL PUMPS

Pressure Oscillations Caused by Vapor Front Entering Each Fluid Node

\[\Rightarrow \text{HIGH MASS FLOW RATE} \]

\& \text{PRESSURE PEAKS}

ESATAN/FHTS WITH MECHANICAL PUMPS

SAME BEHAVIOUR

SMOOTHER
SINDA/FLUINT WITH CAPILLARY PUMPS

OSCIILLATIONS MORE SEVERE THAN WITH MECHANICAL PUMPS

SAME GLOBAL BEHAVIOUR

ESATAN/FHTS WITH CAPILLARY PUMPS

SAME CONCLUSION AS WITH SINDA/FLUINT
TEMPERATURE (MECHANICAL PUMPS)

Temperature: end of vapour line, beginning & end of liquid line results vs. test measurement

VAPOUR FRONT MOVES TOO FAST

TEMPERATURE ESATAN/FHTS mechanical vs. capillary

THE VAPOUR FRONT MOVES EVEN FASTER WITH CAPILLARY PUMPS

(NO CONTROL ON MASS FLOW RATE FOR FIRST BUBBLES GENERATION IN THE CAPILLARY PUMP)
INFLUENCE OF NUMBER OF NODES

INITIAL STEADY-STATE:

Q < 0

THEN THE HEAT EXTRACTION IS REMOVED ON THE UPPER LINE

FINAL STEADY-STATE:

Q < 0

INFLUENCE OF NUMBER OF NODES ON MASS FLOW RATE WITHIN ISOLATOR?

CONVERGENCE IN TIME STEP

MASS FLOW RATE IN ISOLATOR

CPU: 0.02 s / 42 s, 0.004 s / 81 s, 0.0008 s / 146 s
INFLUENCE OF NUMBER OF NODES

1) CONVERGENCE REQUIRES A VERY HIGH NUMBER OF NODES
2) FRONT MOVES FASTER

CPU: 16 / 1mn21s, 28 / 2mn19s, 52 / 5mn12s, 100 / 10mn6s, 196 / 21mn4s, 388 / 60mn6s

ANALYSIS

- ABILITY TO SOLVE START-UP FROM FULLY FLOADED LOOP WITH PARALLEL LINES

- TYPICAL CPU TIME:
 - MECH. PUMPS: ESATAN/FHTS 120 mn, SINDA/FLUINT 10 mn
 - CAPIL. PUMPS: 180 mn, 50 mn

- LARGE INFLUENCE OF PRESSURE DROPS ON RESULTS
- NUMERICAL DIFFICULTIES TO SOLVE IF VAPOUR FRONT IS BLOCKED BY EVAPORATORS BEFORE IT REACHES THE CONDENSER
- VERY SMALL TIME STEPS

- HOWEVER, QUESTIONS ABOUT COHERENCE OF PHYSICS MODELLED WITH REALITY
 - LUMPED PARAMETER METHOD
 - HOMOGENEOUS MODEL

- => MORE ANALYTICAL AND EXPERIMENTAL WORK WOULD BE REQUIRED ON A SIMPLER LOOP (1 EVAPORATOR, 1 CONDENSER) TO GET CONFIRMATION
CONCLUSION

THE ESATAN/FHTS CAPILLARY ELEMENTS WORK PROPERLY WITHIN
THE LIMITATION OF THE PHYSICAL MODEL

CAPILLARY ELEMENTS SIMPLIFY THE WORK OF THE USER

THE MODELLING OF START-UP IS POSSIBLE

HOWEVER, MAYBE IT SHOULD BE LIMITED TO MODELS IN WHICH
FLUID TRANSIENT IS NEGLIGIBLE

• MORE QUESTIONS THAN ANSWERS AT THE END OF THE WORK

• DOUBT ON THE POSSIBILITY TO GET A SIMPLER AND MORE
PRACTICAL MODEL FOR FLUID START-UP

TRANIENT CAPILLARY PUMPED LOOP
MODELLING WITH
ESATAN/FHTS AND SINDA/FLUINT

Christian PUILLLET, Hugo MAMEDE FIGUEIREDO

C.N.E.S.
Département Thermique
DTS / AE / MTE / TH
18, avenue Edouard Belin, F-31401 TOULOUSE cedex 04, France
christian.puillet@cnes.fr