

ESTEC 15th Thermal and ECLS Software

October 2001

How?

- Creating a Mother mathematical model
- Selecting input parameters and giving them a variation law
- Selection of a combination of input values with the Monte Carlo methodology
- Cloning the Mother model for each set of input variables combination
- Running deterministic cases with a cloned model per combination

ESTEC 15th Thermal and ECLS Software

October 2001

Thermal problems on spacecraft solved by STORM

Stochastic Problems

- Uncertainty analysis
- Correlation of test results
- Design improvements

Non Stochastic Problems

- Critical design cases selection
- Definition of designs
 - Radiation areas
 - Robust heating systems

ESTEC 15th Thermal and ECLS Software

October 2001

October 2001

5

STOCHASTIC APPROACH TO SPACECRAFILIES

Uncertainty analysis of a satellite (cont.)

SIGNIFICANT INPUT VARIABLES

Uncertainty analysis of a satellite (cont.)

PROBABILISTIC DATA OF UNCERTAINTY ANALYSIS

N.Var	Num. shot	X_Min	X_Max	Conf_Mean	Mean	Conf_Mean+	Conf_Std	Std	Conf_Std+	Var
in_0	80	0.37	0.42	0.391	0.395	0.399	0.015	0.0174	0.0206	0.0003
in_1	80	0.35	0.44	0.389	0.395	0.401	0.0238	0.0275	0.0325	0.00075
in_2	80	0.87	0.91	0.887	0.89	0.893	0.0123	0.0142	0.0169	0.0002
in_3	80	0.4	0.7	0.538	0.553	0.567	0.0584	0.0675	0.0799	0.00455
in_4	80	2	7	4.11	4.49	4.86	1.48	1.71	2.03	2.94
in_5	80	20	30	24.4	25	25.6	2.5	2.89	3.42	8.33
in_6	80	8.01	10.9	9.28	9.48	9.67	0.754	0.872	1.03	0.76
in_7	80	9.51	14.9	11.9	12.2	12.6	1.41	1.63	1.93	2.66
in_8	80	4	6.9	5.25	5.45	5.64	0.765	0.884	1.05	0.782
out_0	80	4.42	8.13	5.76	5.96	6.15	0.774	0.895	1.06	0.8
out_1	80	19.4	36.3	26.2	27	27.9	3.2	3.7	4.38	13.7
out_2	80	12.9	25.9	18.1	18.7	19.3	2.32	2.68	3.18	7.19
out_3	80	17.6	34.6	24.3	25.1	25.9	3.26	3.76	4.46	14.2

ESTEC 15th Thermal and ECLS Software

October 2001

13

STOCHASTIC APPROACH TO SPACECRAFILIES

CASA ESPACIO

Uncertainty analysis of a satellite (cont.)

PROBABILISTIC DATA OF UNCERTAINTY ANALYSIS

N.Var	Modal class	Modal class+	CV(%)	Avdev	Skewness	Kurtosis	Description
in_0	0.407	0.414	4.4	0.0152	-0.0219	-1.31	ALPHA Rear Frame CLEAR A.
in_1	0.35	0.361	7	0.024	-7.47E-06	-1.24	ALPHA Rear Frame CHROMIC A.
in_2	0.87	0.875	1.6	0.012	-7.55E-06	-1.3	EPS Rear Frame CLEAR ANOD.
in_3	0.475	0.512	12.2	0.06	0.158	-0.246	EPS Rear Frame CHROMIC AN.
in_4	2	2.62	38.2	1.49	-0.00899	-1.24	MLI FACTOR
in_5	25	26.2	11.5	2.45	-0.00318	-1.12	OBDH POWER
in_6	9.82	10.2	9.2	0.768	-0.0243	-1.3	TRP POWER
in_7	11.5	12.2	13.3	1.39	0.00353	-1.22	PCU POWER
in_8	4.36	4.72	16.2	0.765	0.00477	-1.27	MW POWER
out_0	4.88	5.35	15	0.742	0.558	-0.399	Batt Temp
out_1	27.8	29.9	13.7	3.05	0.0917	-0.621	OBDH Temp
out_2	17.8	19.4	14.3	2.07	0.408	0.226	TRP Temp
out_3	21.9	24	15	3.05	0.238	-0.348	PCU Temp

CASA ESPACIO

STOCHASTIC APPROACH TO SPACECRAFILIES

Critical cases selection

- Critical Cases Selection based on temperatures for a fixed design and not based on environments
 - Steady State
 - Transient

All thermal parameters (Radiation data, heat inputs and thermal model) can be changed

- Orbit altitude, inclination, ascending node...
- Satellite attitude
- External Radiation values (solar, albedo, terrestrial)
- Season
- Conductances

Critical cases selection (cont.)

- Thermal Capacities
- Heating Power and/or thresholds
- Unit power dissipation (sunlight/eclipse)

Note:

- THERE IS A CRITICAL CASE FOR EACH UNIT OR SATELLITE ELEMENT
- CRITICAL CASES SELECTION DEPENDS ON THE RESPONSE OF THE DESIGN, NOT ON THE INPUTS

ESTEC 15th Thermal and ECLS Software

October 2001

17

STOCHASTIC APPROACH TO SPACECRAFTICS Critical cases selection (cont.) I Example: Spanish MINISAT. 3 years of flight .
Radiators on lateral faces
Sun pointed (Nutation up to 7 degrees)
Attitude around sun axis 0:360°. YAW angle
Orbit inclination 150° (any ascending node)
Note: Any combination of orbit ascending node, season and

October 2001

satellite attitude is feasible depending on launch day.

Critical cases selection (cont.)

EADS

CASA ESPACIO

STOCHASTIC APPROACH TO SPACECRAFILIES

Thermal test correlation

Present Approach

- Check temperature deviations
- Select a parameter. Modify model
- Verify the response for all thermocouples
- Select other parameter. Modify model
- New runs and verification of results
- Repeat process to meet correlation criteria
- Total analysis loop working time in weeks to months

Stochastic Approach

- Definition of main parameters related to heat transfer in the model. CORRELATION MATRIX
- Selection of parameters variation range and interval to move their range.
- Run all test cases imposing objectives
- Verification of feasible correlation results.
- Local problems solution
- Total analysis working time in days

EADS

CASA ESPACIO

STOCHASTIC APPROACH TO SPACECRAFILICS

TEST RESULTS CORRELATION & FLIGHT PREDICTIONS. PHASE C/D

Thermal test correlation (cont.)

- Example of XMIM-MSP thermal balance test
 - Temperature depends on
 - three main parameters
 - (Conductance to SVM, MLI conductance,
 - Closing foil internal emittance)

Thermal test correlation (cont.)

- Mean deviations lower than 2 degrees.
- Standard deviation lower than 3 degrees.
- Critical elements deviation lower than 5 degrees.

ESTEC 15th Thermal and ECLS Software

October 2001

25

EADS CASA ESPACIO

STOCHASTIC APPROACH TO SPACECRAFILICS

Thermal test correlation (cont.)

Test correlation requirements

- Mean deviations lower than 2 degrees.
- Standard deviation lower than 3 degrees.
- Critical elements deviation lower than 5 degrees.

variables List
Input Variables: 3
dv_0> MLI FACTOR
$dv_1 = ->$ EMILIANCE FOLL FACTOR $dv_2 = ->$ CONDUCTANCE SVM
Output Variables: 14
obj_0> Total Mean
obj_1> Total SD
obj_2> LTT +Z
$obj_3 = -> LTT - Z$
$obj_4 = -> LAI MSP = 2$
out f = Mean LTT
out 7> SD LTT
out 8> Mean Centre MSP
out_9> SD Centre MSP
out_10> Mean LAT MSP
out_11> SD LAT MSP
out_12> Mean WEBS
out_13> MSP WEBS

Thermal test correlation (cont.)

STOCHASTIC APPROACH TO SPACECRAFILICS

CASA ESPACIO

EADS

Thermal test correlation (cont.)

□ IS IT POSSIBLE TO REACH ALL OBJECTIVES?

It is not possible to reach a mean deviation cero and standard deviation cero

That is the effect of non used input variables

FLIGHT RESULTS CORRELATION. PHASE E

OBJECTIVES

- To verify in-orbit performances
- To justify anomalies and deviations
- PROBLEMS IN THIS PHASE
 - Correlation between model and telemetry data with uncertain enviromental conditions
 - Limited data from S/C to assess anomalies and deviations

PROPOSAL

- Stochastic analysis combining all parameters and statistical treatment.
 - Great amount of scenarios to be evaluated
 - Pathologic behaviors
 - Levels of confidence to support conclusions
 - Corrective actions

ESTEC 15th Thermal and ECLS Software

October 2001

<image><section-header>

ESTEC 15th Thermal and ECLS Software

<u>CONCLUSIONS</u>

Utilization of probabilistic analysis methods directly considering the scatter of parameters and their distributions (e.g. loads, geometry, and material properties) provides additional information of the designs.

- Introduction of concepts such as Robustness, Flexible, Optimum or Cost Effective allows choosing the "BEST DESIGN"
- Drawbacks: The use of massive analysis requests a very well conditioned heat transfer phenomena of the S/C. This method does not substitute expertise by number of uncontrolled runs.
- Implementation at EADS CASA Espacio:
 - Soil Moisture and Ocean Salinity (SMOS) instrument, (phase A).
 - XMM Mirror Support Platform and Meteosat Second Generation thermal test correlation.
 - Spanish Minisat flight performance verification.
 - NEXT: GalileoSat, A5 Vehicle Equipment Bay

ESTEC 15th Thermal and ECLS Software

October 2001

37