Participating Sites

- Distribution covering the largest part of Europe:
 - ASTRUID Stevenage
 - ASTRUID Portsmouth
 - ASTRUID Friedrichshafen
 - ASTRUID Bremen
 - ASTRUID Ottobrunn
 - ASTRUID Toulouse
 - EADS-LV Les Mureaux
 - EADS-CASA Espacio Madrid
Thermal studies in Astrium/EADS

- All types of space-related activities
 - Launchers and space infrastructure: Ariane 5, ATV, AR4 and Soyuz
 - Scientific: XMM, Cryosat, Rosetta, Mars Express, Beagle 2, Lobster, First-Planck
 - Observation: Metop, Envisat, Spot5, Helios2, Rocsat
 - Telecommunication: HotBird, NileSat, Astra 2B, Intelsat X, Inmarsat 4
 - Instruments: ASAR, TerraSAR, HIRDLS, MHS

- Analyses in all spacecraft development steps
 - Preliminary design,
 - Thermal system and equipment designs and analyses,
 - Tests: venting, vacuum chamber
 - In-flight data analysis (thermal control aging, model correlation)

Thermal software

A large experience of thermal engineering tools

- Thermal geometrical modelling and thermal radiation
 - Principal tool: THERMICA
 - ESARAD: Used on ESA projects. Principal tool at Astrium Stevenage
 - IDEAS/TMG
 - Internal software: RMC, RAYSPA, RAYSOL (EADS-LV)

- Thermal conduction
 - THERMICA
 - IDEAS/TMG
 - ESATAN
 - Internal software: MONA, SISTHER (EADS-LV)
Thermal software

- Thermal network analyzer
 - ESATAN, standalone or integrated in THERMICA
 - TMG
- Thermal framework:
 - THERMICA
 - IDEAS
 - Internal software: SISTHER (EADS-LV)
- Thermo-elastic analysis:
 - IDEAS
 - NASTRAN
- AeroThermal:
 - Internal software: AEROTHER
- Venting
 - FLUENT

Major issues/problems

User feedback permits to identify the development priorities

- Model generation
 - Requirement for CAD-like tools and interfaces with CAD tools
 - Combination of sub-models
- Thermal model exchange
 - Constraints imposed by: customer requirement, tools used in-house, sub-contractors limited capabilities
 - Example: ASAR
 - Instrument level analysis with TMG
 - Reduced model in ESATAN for the prime contractor and ESA
 - Main sub-contractors using .TMG, SINDA, ESATAN and THERMICA
 - Sub-contractors also have sub-contractors using different tools
 - Implies: model duplication, keep skills on several software
 - Need for standardization: STEP/TAS, STEP/NRF, HDF ...
Major issues/problems

- Esatan solution routines
 - Problems in transient with mixed small and high capacitances (CPS Mars Express) or mixed small and high radiative couplings (ROCSAT)
- Postprocessing
 - Considered as insufficient by users
 - Example of solution: IDEAS or PATRAN used to do fancy pictures
- Thermo-elastic analyses
 - Temperature transfer is cumbersome
 - IDEAS regarded as a good package combining everything
- Model Reduction
- FE thermal analysis tool required for specific analyses

Major issues/problems

- METOP
 - Problems using ESARAD (Oracle)
 - ESATAN problems with large model
 - Post-processing with Unix tools
- Mars Express
 - Fluxes around Mars with temperature cartography of the Planet
- Marfeq (Madras instrument on Proteus platform)
 - Fast rotating cylinder, periodically showing space to internal elements
Thermica current status

- Thermica is an integrated thermal chain used for the design of the spacecraft thermal control:
 - in feasibility studies
 - for technological choices (e.g.: passive or active controls)
 - during correlation with test predictions

- Thermica computes:
 - thermal radiation exchanges with space and between surfaces
 - external fluxes: Sun, Earth Albedo, Earth infrared emission
 - thermal conduction in structures
 - temperatures by means of other commercial packages (Esatan, Sinda/G)

THERMICA current status

- THERMICA takes advantage of common developments with other applications requiring 3D models:
 - Mass, balancing and inertia computation
 - Environment: Environment models, Radiation Dose analysis, Debris and Meteoroids, Oxygen Atom
 - In orbit perturbations: air drag, solar pressure, gravity gradient, magnetic moment
 - Plume impingement (chemical propulsion),
 - Electrical propulsion impingement,
 - Power analysis
 - Antenna patterns: GTD and Method of moments
THERMICA current status

- Framework common to all the applications:
 - development optimisation
 - easier for users to move from an application to the other

- model building capabilities:
 - interactive model builder (V4)
 - interface with CAD tools (IGES, UNV, STEP/TAS, VRML)

- display capabilities:
 - interactive 3D display for pre and post-processing (incl. isocontours)
 - 2D plots

THERMICA mission definition module developed in synergy with:

- Mission analysis tools (MAGiC)
- Mission Planning and AOCS validation tools (Simis2)
Thermica used in the world

- Europe: roughly 35 companies
- USA: Boeing (heavily used), Hughes, Kodak
- Rest of the world: Japan, Israël, Australia

Boeing’s comments:
- Easy to learn, no formal training required
- Easy to use geometry building tools
- Very responsive to proposal activities
- 14 major satellite programs supported in 18 months (Teledesic, Ellipso, @Contact, Discoverer II, Refly, GPS II F, Mars Sample Return, GE*, …)
- Productivity increase compared to TMG, Nevada or TSS

Thermica next version (V4)

- Interactive model builder
 - New shapes (revolution shapes, prisms, polygonal shapes with holes)
 - Sub-models

- New mission definition module
 - Kepler +J2 orbit generator
 - Extended to interplanetary missions
 - Orbital change from thruster impulse
 - More flexibility for pointing sequences chaining
 - Enhanced graphical display
Thermica next version (V4)

- Thermal radiation
 - Planetary albedo and Infra-red models
 - Fast spin on a portion of the model

Thermica

- Thermal conduction (V4)
 - interactive module for conduction definition
 - automatic calculation from the spacecraft 3D model (already available)
 - fixed or parametric values can also be input
Thermica future developments

- Thermal model generation
 - Improved interface to CAD tools (CATIA)
- Thermal radiation
 - Improved accuracy control
 - Improved ray-tracing
- Thermal conduction
 - Improved calculation for node merging
 - Temperature dependent and non-isotropic material
- Network analyser
 - Add flexibility in the input deck generation
- Post-processing
 - Graphical displays in the flux budget analysis
- Model reduction
 - On-going studies

Conclusion

- Need for unifying development efforts in Europe
 - Increasing competition (US software)
- No need to impose software in Europe
 - Bad experience on METOP
 - Companies often forced to maintain several software
 - STEP/TAS is a good solution
- Need to improve ESATAN solution routines
 - SINDA/G : 4 to 5 times faster
- Polytan development not a priority
 - Existing frameworks : Thermica, TMG, Thermal desktop…
- Prepare thermal tool integration in CAD/CAE packages
- Studies on thermo-elastics
- Provide validated post-processing tools to the thermal engineers