

Introduction to SINAS

7th February 2012

- SINAS is a S/W tool for mapping thermal node temperatures (e.g. ESATAN results) onto a Finite Element (FE) mesh (e.g. NASTRAN model)
 - Typically used to prepare temperature load data for thermo-elastic analysis
 - Other applications of SINAS are also possible e.g. automatic conductor generation
- Project was initiated by structures section at ESA circa 1985
 - Developed by Dutch Space (formerly Fokker) under a series of ESA contracts
 - Last development contract was 1998
 - IPR handed to ESA in 2004
- Freely available on TEC-MTV exchange portal http://exchange.esa.int

Introduction to SINAS (2)

- When preparing a thermo-elastic analysis usual inputs are:
 - Geometrical Mathematical Model (GMM) for radiative calculations (e.g. ESATAN-TMS)
 - Thermal Mathematical Model (TMM) for temperature computation (e.g. ESATAN)
 - Structural FE model adapted for thermo-elastic analysis (e.g. NASTRAN)
- Objective is to map TMM results (at lumped parameter nodes) to FEM model grid points <u>but there are challenges</u>:
 - GMM and FE model almost always use different geometry (FE uses much finer mesh)
 - Not all nodes in TMM are modeled in GMM (e.g. purely conductive nodes)
 - Specific H/W usually missing in FE model (e.g. MLI)
 - Equipment often modelled as lumped (point) masses in FE model
- Purpose of SINAS is to help overcome these challenges and enable a high quality mapping of lumped parameter temperatures onto FE mesh

SINAS Functionality

- Functionality to build overlap (mapping) between thermal nodes and FE mesh
 - MSC Patran add-in (written in PCL) to aid the overlapping process
 - Automated overlap where thermal and structural geometry are (almost) coincident
 - Manual overlap supported for:
 - non-coincident thermal and structural geometry
 - thermal nodes with no geometric representation (conductive nodes)
- Any thermal lumped parameter code is supported (ESATAN, SINDA etc.)
 - User provides temperatures in SINAS format (convertors provided for ESATAN .csv)
- Supported FEM codes are MSC NASTRAN, ASKA:
 - Generates FE nodal temperature loads (NASTRAN TEMP cards)
 - Generates element temperature loads for transverse temperature gradients such as honeycomb panels (e.g. NASTRAN TEMPP1)

The SINAS Method in 3 Steps

SINAS Method: Step 1 : Correspondence building

- Build correspondence/mapping between:
 - Lumped parameter thermal nodes
 - Structural finite elements
- Using MSC.PATRAN GUI
- Automatic overlap detection

SINAS Method: Step 2 – Matrix Generation

- Next step is to mathematically link thermal nodes and FE nodes using *Prescribed Average Temperature Method*:
 - Weighted average temperature of FE nodes of elements overlapping a thermal node is equal to the thermal node temperature
- FE shape functions are used to obtain weighting coefficients:

- Derive conduction matrix from structural FE mesh
 - Replace structural materials with thermal ones (e.g. MAT1 with MAT4)
 - Use FE tool (NASTRAN or ASKA) to generate conduction matrix

- Assemble the following partitioned system of interpolation equations
 - Thermal node temperatures put in vector form: T^t
 - Solve the system of interpolation equations for: T^f

SINAS Simple Example (1)

esa

SINAS Simple Example (2)

Purely geometrical interpolation of TLP temperatures on FE mesh

SINAS Simple Example (3) : SINAS Results

- Contours of SINAS results show temperatures consistent with thermal model
- Use of conductive FE model for interpolation provides better mapping

ESTEC In-house SINAS Competence

- Thermal Analysis and Verification Section (TEC-MTV) has experience using SINAS on real projects
 - Knowledge of all major space thermal tools (ESATAN-TMS, Thermal Desktop/SINDA, Thermica)
 - Patran experience for building correspondence between thermal and structural models
 - Experience using converting structural FE model to conductive thermal model for mapping
 - Experience with NASTRAN Thermal and NASTRAN for thermo-elastic analysis
- TEC-MTV has used SINAS on several projects:
 - GALA optical bench
 - LISA Pathfinder full S/C model (ESA ESTEC)
 - EXPERT

Application Example: LISA Pathfinder

- SINAS has been used for LPF model twice in 2006 and 2009
- Combined SCM and LTP Thermal Model approx 10,000 thermal nodes
- Full S/C structural FE model approx 400,000 nodes, 500,000 elements

esa

Application Example: LISA Pathfinder

 Thermal model results mapped onto FE model – temperatures shown in Patran

